SYBSc SEMESTER IV
 MATHS II
 SAMPLE QUESTIONS

1.

Let Gbe a group and $a, b, c \in G$ then the solution of the equations $a x b^{-1}=c$ and $a^{-1} y^{-1} b^{-1}=c$ are
(a) $\quad x=a^{-1} c^{-1} b, y=a^{-1} c^{-1} b^{-1}$
(b) $\quad x=a^{-1} c \quad b, y=a^{-1} c^{-1} b^{-1}$
(c) $x=b^{-1} c^{-1} a^{-1}, y=a^{-1} c^{-1} b^{-1}$
(d) $\quad x=a^{-1} c \quad b, y=b^{-1} c^{-1} a^{-1}$
2.

Consider the set $\mathrm{G}=\{\overline{5}, \overline{15}, \overline{25}, \overline{35}\}$ under multiplication of residue classes modulo 40 . Then
(a) $\quad \mathrm{G}$ is not a group as $\overline{1} \notin G$
(b) G is a group with $\overline{25}$ as identity
(c) G is a group with $\overline{5}$ as identity
(d) None of these
3. For what value of $n, D_{n}=S_{n}$
(a) $\mathrm{n}=3$
(b) $\mathrm{n}=4$
(c) $\mathrm{n}=5$
(d) No such n exists
4.

Let G be a group having elements of order $1,2,3,4,5,6$. The minimal possible order G of is
(a) 100
(b) 30
(c) 60
(d) 1
5.

Let G be a non-Abelian group $Z(G)=\{x \in G / a x=x a, \forall a \in G\}$ then
(a) $Z(G)=\{e\}$
(b) $Z(G) \neq \mathrm{G}$ and $\mathrm{Z}(\mathrm{G})$ is abelian
(c) $\quad Z(G)=G$
(d) $\mathrm{Z}(\mathrm{G})$ is non-abelian
6. Number of elements of order 5 in Z_{1000} is
(a) 1
(b) 4
(c) 5
(d) 200
7.

Let G be a cyclic group of order n generated by ' a ’ then $\left\langle a^{r}\right\rangle=\left\langle a^{s}\right\rangle$ implies
(a) $(\mathrm{r}, \mathrm{s})=1$
(b) $\quad \mathrm{S}=(\mathrm{n}, \mathrm{r})$
(c) $\quad(\mathrm{n}, \mathrm{r})=(\mathrm{n}, \mathrm{s})$
(d) $\quad(r \mid(n, s))$
8. Let H be a subgroup of G and $a, b \in G$ If then $a H \neq b H$ then
(a)
$a H \cap b H=\varnothing$
(b)
$a H \cap b H \neq \varnothing$
(c)
$a H \subset b H$
(d)
$a H \supset b H$
9. Let H be a subgroup of G anda $G . a H$ is a subgroup of G if and only if
(a)
$a \notin H$
(b)
$a \in H$
(c)
$a^{-1} \notin H$
(d) None of these
10. If $G=\mathbb{Z}$ with addition and $H=\{0, \pm 3, \pm 6, \pm 9, \ldots\}$ then which of the following is true
(a) $11+\mathrm{H}=17+\mathrm{H}$
(b) $11+\mathrm{H}=13+\mathrm{H}$
(c) $7+\mathrm{H}=23+\mathrm{h}$
(d) $\mathrm{H}=\mathrm{H}+2$

