SYBSc SEMESTER IV MATHS II SAMPLE QUESTIONS

1	

Let Gbe a group and $a, b, c \in G$ then the solution of the equations $axb^{-1} = c$ and $a^{-1}y^{-1}b^{-1} = c$ are

- (a) $x = a^{-1}c^{-1}b, y = a^{-1}c^{-1}b^{-1}$ (b) $x = a^{-1}c \ b, y = a^{-1}c^{-1}b^{-1}$ (c) $x = b^{-1}c^{-1}a^{-1}, y = a^{-1}c^{-1}b^{-1}$ (d) $x = a^{-1}c \ b, y = b^{-1}c^{-1}a^{-1}$
- 2.

Consider the set $G = \{\overline{5}, \overline{15}, \overline{25}, \overline{35}\}$ under multiplication of residue classes modulo 40. Then

	(a)	G is not a group as $\overline{1} \notin G$	(b)	G is a group with $\overline{25}$ as identity
	(c)	G is a group with $\overline{5}$ as identity	(d)	None of these
3. For what value of $n, D_n = S_n$				
	(a)	n=3	(b)	n=4
	(c)	n=5	(d)	No such n exists
4.				

Let G be a group having elements of order 1,2,3,4,5,6. The minimal possible order G of is

(a)	100	(b)	30
(c)	60	(d)	1

5.

Let G be a non-Abelian group $Z(G) = \{ x \in G | ax = xa, \forall a \in G \}$ then

(a)	$Z(G)=\{e\}$	(b)	$Z(G) \neq G$ and $Z(G)$ is abelian
(c)	Z(G)=G	(d)	Z(G) is non-abelian

6. Number of elements of order 5 in Z_{1000} is

(a)	1	(b)	4
(c)	5	(d)	200

7.

Let G be a cyclic group of order n generated by 'a ' then $\langle a^r \rangle = \langle a^s \rangle$ implies

	(a) (r	,s)=1	(b) S=	=(n,r)
	(c) (n	(n,r)=(n,s)	(d)	(r (n,s))
8.	Let H be	a subgroup of G and $a, b \in$	G If then aH	$\neq bH$ then
	(a)	$aH \cap bH = \emptyset$	(b)	$aH \cap bH \neq \emptyset$
	(c)	$aH \subset bH$	(d)	$aH \supset bH$

9. Let H be a subgroup of G and $\in G$. aH is a subgroup of G if and only if

(a)
$$a \notin H$$
 (b) $a \in H$
(c) $a^{-1} \notin H$ (d) None of these

- 10. If $G = \mathbb{Z}$ with addition and $H = \{0, \pm 3, \pm 6, \pm 9, ...\}$ then which of the following is true
 - (a) 11+H=17+H (b)
 - (c) 7+H=23+h
- (b) 11+H=13+H(d) H=H+2
- (d)