ROYAL COLLEGE OF ARTS, SCIENCE AND COMMERCE

TYBSc SEMESTER VI

ANALYTICAL CHEMISTRY SAMPLE PAPER(USCH604)

 a) Optical b) Electroanalytical c) Thermal d) Radioanalytical 02 Titration of Bi³⁺ with EDTA at -0.18 V (vs. SCE) is an example of (1) a system in which is/are reducible. a) Reactant b) Product c) Titrant d) Both reactant and titrant 03 Calculate the capillary characteristic if the rate of flow of mercury (1) drop is 4 mg/s and drop time is 3s. a) 1.86 b) 2.65 c) 3.02 d) 4.28 04 Oxygen is readily available in polarography. a) Maxima suppressor b) Depolariser c) Supporting electrolyte d) Indifferent electrolyte d) Indifferent electrolyte (1)
 c) Thermal d) Radioanalytical 02 Titration of Bi³⁺ with EDTA at -0.18 V (vs. SCE) is an example of (1) a system in which is/are reducible. a) Reactant b) Product c) Titrant d) Both reactant and titrant 03 Calculate the capillary characteristic if the rate of flow of mercury (1) drop is 4 mg/s and drop time is 3s. a) 1.86 b) 2.65 c) 3.02 d) 4.28 04 Oxygen is readily available in polarography. a) Maxima suppressor b) Depolariser c) Supporting electrolyte d) Indifferent electrolyte 05 can be used aspolarizable electrode for reactions (1)
 d) Radioanalytical 02 Titration of Bi³⁺ with EDTA at -0.18 V (vs. SCE) is an example of (1) a system in which is/are reducible. a) Reactant b) Product c) Titrant d) Both reactant and titrant 03 Calculate the capillary characteristic if the rate of flow of mercury (1) drop is 4 mg/s and drop time is 3s. a) 1.86 b) 2.65 c) 3.02 d) 4.28 04 Oxygen is readily available in polarography. a) Maxima suppressor b) Depolariser c) Supporting electrolyte d) Indifferent electrolyte 05 can be used aspolarizable electrode for reactions (1)
 02 Titration of Bi³⁺ with EDTA at -0.18 V (vs. SCE) is an example of (1) a system in which is/are reducible. a) Reactant b) Product c) Titrant d) Both reactant and titrant 03 Calculate the capillary characteristic if the rate of flow of mercury (1) drop is 4 mg/s and drop time is 3s. a) 1.86 b) 2.65 c) 3.02 d) 4.28 04 Oxygen is readily available in polarography. a) Maxima suppressor b) Depolariser c) Supporting electrolyte d) Indifferent electrolyte 05 can be used aspolarizable electrode for reactions (1)
 a system in which is/are reducible. a) Reactant b) Product c) Titrant d) Both reactant and titrant 03 Calculate the capillary characteristic if the rate of flow of mercury (1) drop is 4 mg/s and drop time is 3s. a) 1.86 b) 2.65 c) 3.02 d) 4.28 04 Oxygen is readily available in polarography. (1) a) Maxima suppressor b) Depolariser c) Supporting electrolyte d) Indifferent electrolyte 05 can be used aspolarizable electrode for reactions (1)
 a) Reactant b) Product c) Titrant d) Both reactant and titrant 03 Calculate the capillary characteristic if the rate of flow of mercury (1) drop is 4 mg/s and drop time is 3s. a) 1.86 b) 2.65 c) 3.02 d) 4.28 04 Oxygen is readily available in polarography. (1) a) Maxima suppressor b) Depolariser c) Supporting electrolyte d) Indifferent electrolyte 05 can be used aspolarizable electrode for reactions (1)
 b) Product c) Titrant d) Both reactant and titrant 03 Calculate the capillary characteristic if the rate of flow of mercury (1) drop is 4 mg/s and drop time is 3s. a) 1.86 b) 2.65 c) 3.02 d) 4.28 04 Oxygen is readily available in polarography. (1) a) Maxima suppressor b) Depolariser c) Supporting electrolyte d) Indifferent electrolyte 05 can be used aspolarizable electrode for reactions (1)
 c) Titrant d) Both reactant and titrant O3 Calculate the capillary characteristic if the rate of flow of mercury (1) drop is 4 mg/s and drop time is 3s. a) 1.86 b) 2.65 c) 3.02 d) 4.28 O4 Oxygen is readily available in polarography. (1) a) Maxima suppressor b) Depolariser c) Supporting electrolyte d) Indifferent electrolyte of can be used aspolarizable electrode for reactions (1)
 d) Both reactant and titrant Calculate the capillary characteristic if the rate of flow of mercury (1) drop is 4 mg/s and drop time is 3s. a) 1.86 b) 2.65 c) 3.02 d) 4.28 O4 Oxygen is readily available in polarography. (1) a) Maxima suppressor b) Depolariser c) Supporting electrolyte d) Indifferent electrolyte O5 can be used aspolarizable electrode for reactions (1)
 O3 Calculate the capillary characteristic if the rate of flow of mercury (1) drop is 4 mg/s and drop time is 3s. a) 1.86 b) 2.65 c) 3.02 d) 4.28 O4 Oxygen is readily available in polarography. (1) a) Maxima suppressor b) Depolariser c) Supporting electrolyte d) Indifferent electrolyte d) Indifferent electrolyte of mercury (1)
 O3 Calculate the capillary characteristic if the rate of flow of mercury (1) drop is 4 mg/s and drop time is 3s. a) 1.86 b) 2.65 c) 3.02 d) 4.28 O4 Oxygen is readily available in polarography. (1) a) Maxima suppressor b) Depolariser c) Supporting electrolyte d) Indifferent electrolyte d) Indifferent electrolyte of mercury (1)
 drop is 4 mg/s and drop time is 3s. a) 1.86 b) 2.65 c) 3.02 d) 4.28 04 Oxygen is readily available in polarography. (1) a) Maxima suppressor b) Depolariser c) Supporting electrolyte d) Indifferent electrolyte 05 can be used aspolarizable electrode for reactions (1)
 a) 1.86 b) 2.65 c) 3.02 d) 4.28 O4 Oxygen is readily available in polarography. (1) a) Maxima suppressor b) Depolariser c) Supporting electrolyte d) Indifferent electrolyte O5 can be used aspolarizable electrode for reactions (1)
 b) 2.65 c) 3.02 d) 4.28 O4 Oxygen is readily available in polarography. (1) a) Maxima suppressor b) Depolariser c) Supporting electrolyte d) Indifferent electrolyte O5 can be used aspolarizable electrode for reactions (1)
 c) 3.02 d) 4.28 O4 Oxygen is readily available in polarography. (1) a) Maxima suppressor b) Depolariser c) Supporting electrolyte d) Indifferent electrolyte O5 can be used aspolarizable electrode for reactions (1)
04Oxygen is readily available in polarography.(1)a) Maxima suppressorb) Depolariser(1)b) Depolariser(1)c) Supporting electrolyte(1)d) Indifferent electrolyte(1)05 can be used aspolarizable electrode for reactions(1)
 a) Maxima suppressor b) Depolariser c) Supporting electrolyte d) Indifferent electrolyte 05 can be used aspolarizable electrode for reactions (1)
 b) Depolariser c) Supporting electrolyte d) Indifferent electrolyte 05 can be used aspolarizable electrode for reactions (1)
 c) Supporting electrolyte d) Indifferent electrolyte 05 can be used aspolarizable electrode for reactions (1)
 d) Indifferent electrolyte 05 can be used aspolarizable electrode for reactions (1)
05 can be used aspolarizable electrode for reactions (1)
-
• • • • • • • • • • • • • • • • • • • •
involving the use of oxidizing agents that attack mercury.
a. DME
b. RPE
c. SCE
d. SHE
06 Component X had a retention time of 20.4 minutes and peak width (1) (1)
of 1.20 minutes on a 40 cm long column. The unretained species had a retention time of 1.40 minutes. The number of theoretical
plates in the column is and the capacity factor is cm.
a. 17, 0.0686 b. 272, 14.57
c. 4624, 13.57
d. 289, 15.57

07	In CLC is used as liquid phase for concretion of aromatic	(1)
07	In GLC, is used as liquid phase for separation of aromatic	(1)
	compounds.	
	a. Benzyl dipyridyl	
	b. Squalene	
	c. Pyridine d. Silicone oil	
00	is not used as a detector in GC.	(1)
08		(1)
	a. Thermal conductivity detectorb. Differential refractive index detector	
	c. Flame ionization detector	
00	d. Electron capture detector	(1)
09	An anion exchanger resin is a high molecular weight, cross linked	(1)
	polymer containing group. aNH ₂	
	bOH	
	cCOOH	
	dSO ₃ H	
10	Ion exchange capacity of a resin is expressed in	(1)
10	a. mol/dm^3	(-)
	b. mM/cm^3	
	c. meq/dm^3	
	d. meq/g	
11	are the most widely used preservatives in deodorants	(1)
	and antiperspirant.	
	a) Triclosan	
	b) Aluminium Salts	
	c) Parabens	
	d) Propylene glycol	
12	Lowenthal method involves oxidation of tannin by	(1)
	a. Potassium permanganate	
	b. Potassium dichromate	
	c. Hydrogen peroxide	
	d. Indigo carmine	
13	Fehling's solution A is	(1)
	a. Cuprous oxide	
	b. Cupric oxide	
	c. Alkaline sodium potassium tartarate	
	d. Copper sulphate pentahydrate	(4)
14	is used as indicator in Cole's ferricyanide method.	(1)
	a. Methyl red	
	b. Methyl yellow	
	c. Methylene blue	
	d. Starch	

15	color appears on addition of concentrated sulphuric acid	(1)
	to milk if benzoic acid is present.	
	a) Violet b) Croop	
	b) Green	
	c) Black	
16	d) Buff d. The type of thermal event in $A \rightarrow B \rightarrow C$ is	(1)
16	The type of thermal event in $A_{(s)} + B_{(g)} \rightarrow C_{(s)}$ is a. Sublimation	(1)
	b. Decomposition c. Oxidation	
	d. Combustion	
17		(1)
1/	In the furnace of TGA, inert atmosphere can be maintained by	(1)
	using gas a. N ₂	
	b. CO_2	
	c. Kr	
	d. Ne	
18	In DTA, for inorganic samples, or is used as reference	(1)
10	material.	(-)
	a. Alumina, CaCO ₃	
	b. MgO, CaSO ₄	
	c. $CaCO_3$, $CaSO_4$	
	d. Alumina, MgO	
19	Thermometric titrations are generally carried out under	(1)
	conditions.	
	a. Isothermal	
	b. Adiabatic	
	c. Isobaric	
	d. Isochoric	
20	is a measure of the capacity of an analytical procedure to	(1)
	remain un affected by small but deliberate variation in method	
	parameter.	
	a. selectivity	
	b. Sensitivity.	
	c. Ruggedness	
	d. Robustness	
