SAMPLE QUESTIONS

CLASS-S.Y.B.Sc

Sem IV

Chemistry -1

Physical Chemistry

1. Identify the type of given cell.

(-)Ag | AgCl(s), HCl(a₁) | HCl(a₂), AgCl(s) | Ag(+)

- (a) Electrolyte concentration cell with transference reversible to cation
- (b) Electrolyte concentration cell without transference reversible to cation
- (c) Electrolyte concentration cell without transference reversible to anion
- (d) Electrolyte concentration cell with transference reversible to anion
- 2. For the system **Water** \iff **vapor**, number of degree of freedom is
 - (a) zero
 - (b) one
 - (c) two
 - (d) three
- 3. The potential of ______ is **0.242V.**
 - (a) Saturated calomel electrode
 - (b) Standard hydrogen electrode
 - (c) Quinhydrone electrode
 - (d) Daniel cell
- 4.. For a cell $Zn \mid Zn^{+2} (1M) \mid Ag^{+} (1M) \mid Ag$,

 $\mathbf{E^0}_{\mathbf{Zn+2/Zn}}$ = - 0.76V and $\mathbf{E^0}_{\mathbf{Ag+/Ag}}$ = 0.80V . What is $\mathbf{E^0}$ of cell?

- a) 1.56 V
- b) 1.56V
- c) 0.04V
- d) -0.04V

`5.	Zinc- Magnesium system is an example of		
	(a)	Two component solid-liquid system with formation of compounds having incongruent melting point	
	(b)	Two component solid-liquid system with formation of	
	(~)	compounds having congruent melting point	
	(c)	Two component solid-solid system with formation of compounds having incongruent melting point	
	(d)	Two component solid-solid system with formation of compounds	
	(u)	having congruent melting point	
Inorg	anic C	hemistry	
1)		among the following minerals is a source of	
		ium metal	
	a) Carnotite		
	,	Thortveitite	
	,	Malachite	
2)	,	Galena	
4)	The paramagnetic moment of Sc^{2+} is as per spin only formula		
	a) $\sqrt{2}BM$		
		b) √5 BM	
		e) √3 BM	
		I) √35 BM	
3)		JPAC name of the coordination compound [Co(NH ₃) ₆]Cl ₃ is	
		a) Hexammine Cobalt (III) Chloride	
		b) Hexaammonium Cobalt (II) Chloro	
		c) Trichloride Cobalt (II) ammine	
		d) Hexaaamonium Cobalt (III) CHLORIDE	
4)	The	complex [Co (NH ₃) ₄ Cl ₂ } will	
	a) '	Trans isomer, exhibit optical isomerism	
	•	Cis isomer, exhibit optical isomerism	
	•	Trans isomer, exhibit fac mer isomers	
_,		Cis isomer, exhibit fac mer isomers	
5)		n hydrolysis with water forms	
	,	$VOCl_3$	
	,	$VOCl_2$	
	•	V(OH) ₃	
	a)	VOCl ₄	

Organic Chemistry (UNIT III)

1) The increasing order of reactivity of acid derivatives is
a) acid ester acid halide < acid anhydride < acid amide
b) acid amide < acid halide < acid anhydride < ester
c) acid amide < ester < acid anhydride < acid halide
d) acid halide < acid anhydride < ester < acid amide
2) Statement A: Nucleophilic Acyl Substitution is an elimination- addition reaction
Statement B: Interconversion of acid derivatives follows Nucleophilic acyl
substitution
a) Statement A is True and Statement B is False
b) Statement A is False and Statement B is True
c) Both Statement A and B are True
d) Both Statement A and B are False
3)CH ₃ COOH + NaHCO ₃ → Effervescence
a) Effervescence is due to evolved CO ₂ from CH ₃ COOH
b) Effervescence is due to evolved CO ₂ from NaHCO ₃
c) Effervescence is due to evolved H_2 from CH_3COOH
d) Effervescence is due to evolved H ₂ from NaHCO ₃
4) Strength of benzoic acid can be increased by the presence of group in the ring.
a) -CH ₃
b) -OH
c) -NO ₂
d) $-NH_2$

- **5)** Sulphonation of benzene is a reaction.
- a) nucleophilic addition
- b) electrophilic addition
- c) nucleophilic substitution
- d) electrophilic substitution
