FYBSc

SEMESTER II

MATHS II
SAMPLE QUESTIONS

1. For any integer $\mathrm{n} \geq 2$, in Sn , the number of even permutations is
(a) n
(b)
$\frac{n}{2}$
(c)
$\frac{n!}{2}$
(d)
$\frac{n!}{4}$
2. If $\sigma=(123)(23)$ then σ^{-1} is
(a) $(321)(32)$
(b) (12)
(c) (23)
(d) (13)
3. Consider the recurrence relation $a_{n}=2 a_{n-1}$ with initial conditions $\mathrm{n} \geq 1$ and $a_{0}=3$. Whichof the following is an explicit solution to this recurrence relation?
(a) $a_{n}=3.2^{n}$
(b) $a_{n}=2.3^{n}$
(c) $a_{n}=3.2$
(d) None of these
4. In how many ways can we draw a heart or a spade from an ordinary deck of playing cards?
(a) 169
(b) 26
(c) 52
(d) None of these
5. The number of ways to pick first a vowel and then a consonant from the word MATHEMATICS is
(a) 56 (b) 15 (c) 4 (d) None of these
6. Let $\mathrm{S}(\mathrm{n}, \mathrm{k})$ denote Stirling number of second kind on n -set into k-disjoint nonempty unordered subsets, then $S(n, n)$ is
(a) 0 (b) 1
(c) n
(d) None of these
7. What is the minimum number of students required in a discrete mathematics class to be sure that at least six will receive the same grade, if there are five possible grades, A, B, C, D, and F ?

(a) 25 (b) 26 (c) 5 (d) None of these

8. In how many ways can 15 billiard balls be arranged in a row if 3 are red, 4 are white and 8 are black?
(a) 12 (b) 18 (c) 96 (d) None of these
9. If n and k be positive integers with $n \geq k$, then $S(n, k)$ has recurrence formula
(a) $\mathrm{S}(\mathrm{n}, \mathrm{k})=\mathrm{S}(\mathrm{n}-1, \mathrm{k}-1)+\mathrm{kS}(\mathrm{n}, \mathrm{k})$
(b) $\mathrm{S}(\mathrm{n}, \mathrm{k})=\mathrm{S}(\mathrm{n}-1, \mathrm{k}-1)+\mathrm{kS}(\mathrm{n}-1, \mathrm{k})$
(c) $\mathrm{S}(\mathrm{n}, \mathrm{k})=\mathrm{S}(\mathrm{n}-1, \mathrm{k}-1)+\mathrm{kS}(\mathrm{n}, \mathrm{k}-1)$
(d) None of these
10. How many positive integers not exceeding 1000 are divisible by 7 or 11 ?
(a) 232 (b) 220 (c) 244 (d) None of these
