F.Y.B.Sc. Semester II April 2021

Physics Paper I

Sample Questions

1.	If $\vec{A} = \hat{\imath} + 2\hat{\jmath}$, $\vec{B} = -\hat{\imath} + 2\hat{k}$ and $\vec{C} = 3\hat{\imath} + \hat{\jmath}$. Then $\vec{A} \cdot (\vec{B} \times \vec{C})$ is given by		
	(a)	5	
	(b)	20	
	(c)	-10	
	(d)	10	

2.	If \vec{A}	If $\vec{A} = 3\hat{\imath} + 2\hat{\jmath} + \hat{k}$ and $\vec{B} = \hat{\imath} + \hat{\jmath} + \hat{k}$, then $3\vec{A} + 2\vec{B}$ is		
	(a)	$11\hat{\iota} + 8\hat{j} + 5\hat{k}$		
	(b)	$7\hat{\iota}+8\hat{j}+5\hat{k}$		
	(c)	$7\hat{\iota}+\hat{j}+5\hat{k}$		
	(d)	$14\hat{\iota} + 7\hat{j} + 12\hat{k}$		

3	If \vec{A} is a solenoidal vector then		
	(a)	$\overrightarrow{\nabla} \mathbf{X} \vec{A} = 0$	
	(b)	$\vec{\nabla} \cdot \vec{A} = 0$	
	(c)	$\vec{\nabla} \cdot \vec{A} = 1$	
	(d)	$\vec{A} = 0$	

4	If vector $\vec{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$, then $\vec{\nabla} \cdot \vec{r}$ is		
	(a)	0	
	(b)	3	
	(c)	1	
	(d)	4	

5	If $\vec{A} = y\hat{\imath} + 3y\hat{\jmath} + xy\hat{k}$ then $\vec{\nabla} \times \vec{A}$ is	
	(a)	$y\hat{\imath} + 3y\hat{\jmath} + xy\hat{k}$
	(b)	$x\hat{\imath} - y\hat{\jmath} - \hat{k}$
	(c)	$-x\hat{\imath} + y\hat{\jmath} - \hat{k}$
	(d)	$y\hat{\imath} - 3y\hat{\jmath} + xy\hat{k}$

6	The order and degree of $\left(\frac{d^3y}{dx^3}\right)^2 + \left(\frac{d^2y}{dx^2}\right)^3 + y = 0$ arerespectively.		
	(a)	2,2	
	(b)	1,2	
	(c)	3,2	
	(d)	2,3	

7	The capacitor (C) is connected in series with the battery of potential (V). The charge (Q) on the capacitor plate when it fully charge		
	(a)	Q = C/V	
	(b)	Q = CV	
	(c)	Q = V/C	
	(d)	zero	

8	For series LR circuit, the time constant is the time taken for current rise to of its final maximum current value.	
	(a)	37%
	(b)	63%
	(c)	26%
	(d)	85%

9	The	The given equation, $(1+y^2)y'' + xy' + x = e^x$, is	
	(a)	First order non homogeneous nonlinear equation	
	(b)	Second order non homogeneous nonlinear equation	
	(c)	Second order homogeneous linear equation	
	(d)	First order homogeneous linear equation	

10	eries CR circuit, the maximum value of charge is given by	
	(a)	CR
	(b)	ER
	(c)	CE
	(d)	C/R

11	The equation of motion of a particle is given by $x = 5 \cos (3.14t + \pi/3)$ in cm. The period of oscillation of the particle is			
	(a) 5 sec			
	(b)	1 sec		
	(c) 3 sec			
	(d)	2 sec		

12	The simple harmonic velocity of the oscillator about its equilibrium			
	posi	position is		
	(a) Linear velocity			
	(b)	Phase velocity		
	(c)	Particle velocity		
	(d)	Group velocity		

13	The shape of Lissajous figures is independent of the following		
	(a)	Amplitude of SHM	
	(b)	Frequencies of two SHM	
	(c)	Initial phase of two SHM	
	(d)	Final phase of two SHM	

14	The frequency of a forward travelling wave on sting described by		
	$y = 4 \cos (6.28t + 5x)$ is		
	(a)	1 Hz	
	(b)	0.5 Hz	
	(c)	2 Hz	
	(d)	6.28 Hz	

15	The wave velocity and the velocity with which the particles of medium are vibrating are		
	(a)	same	
	(b)	different	
	(c)	uniform	
	(d)	parallel	