F.Y.B.Sc. Semester II April 2021
 Physics Paper I
 Sample Questions

1. If $\vec{A}=\hat{\imath}+2 \hat{\jmath}, \vec{B}=-\hat{\imath}+2 \hat{k}$ and $\vec{C}=3 \hat{\imath}+\hat{\jmath}$. Then $\vec{A} \cdot(\vec{B} X \vec{C})$ is given by
(a) 5
(b) 20
(c) -10
(d) 10
2. If $\vec{A}=3 \hat{\imath}+2 \hat{\jmath}+\hat{k}$ and $\vec{B}=\hat{\imath}+\hat{\jmath}+\hat{k}$, then $3 \vec{A}+2 \vec{B}$ is

(a)	$11 \hat{\imath}+8 \hat{\jmath}+5 \hat{k}$
(b)	$7 \hat{\imath}+8 \hat{\jmath}+5 \hat{k}$
(c)	$7 \hat{\imath}+\hat{\jmath}+5 \hat{k}$
(d)	$14 \hat{\imath}+7 \hat{\jmath}+12 \hat{k}$

$3 \quad$ If \vec{A} is a solenoidal vector then
(a) $\vec{\nabla} \times \vec{A}=0$
(b) $\vec{\nabla} \cdot \vec{A}=0$
(c) $\vec{\nabla} \cdot \vec{A}=1$
(d) $\vec{A}=0$

4	If vector $\vec{r}=x \hat{\imath}+y \hat{\jmath}+z \hat{k}$, then $\vec{\nabla} \cdot \vec{r}$ is	
(a)	0	
	3	
	(c)	1
	(d)	4

$5 \quad$ If $\vec{A}=y \hat{\imath}+3 y \hat{\jmath}+x y \hat{k}$ then $\vec{\nabla} \times \vec{A}$ is
(a) $y \hat{\imath}+3 y \hat{\jmath}+x y \hat{k}$
(b) $x \hat{\imath}-y \hat{\jmath}-\hat{k}$
(c) $-x \hat{\imath}+y \hat{\jmath}-\hat{k}$
(d) $y \hat{\imath}-3 y \hat{\jmath}+x y \hat{k}$
$6 \quad$ The order and degree of $\left(\frac{d^{3} y}{d x^{3}}\right)^{2}+\left(\frac{d^{2} y}{d x^{2}}\right)^{3}+y=0$ are ___respectively.

(a)	2,2
(b)	1,2
(c)	3,2
(d)	2,3

$7 \quad$ The capacitor (C) is connected in series with the battery of potential (V). The charge (Q) on the capacitor plate when it fully charge

(a)	$\mathrm{Q}=\mathrm{C} / \mathrm{V}$
(b)	$\mathrm{Q}=\mathrm{CV}$
(c)	$\mathrm{Q}=\mathrm{V} / \mathrm{C}$
(d)	zero

| 8 | For series LR circuit, the time constant is the time taken for current to |
| :--- | :--- | rise to \qquad of its final maximum current value.

(a)	37%
(b)	63%
(c)	26%
(d)	85%

$9 \quad$ The given equation, $\left(1+y^{2}\right) y^{\prime \prime}+x y^{\prime}+x=e^{x}$, is \qquad .

(a)	First order non homogeneous nonlinear equation
(b)	Second order non homogeneous nonlinear equation
(c)	Second order homogeneous linear equation
(d)	First order homogeneous linear equation

10 In series CR circuit, the maximum value of charge is given by \qquad .

(a)	CR
(b)	ER
(c)	CE
(d)	C / R

12 The simple harmonic velocity of the oscillator about its equilibrium position is \qquad .
(a) Linear velocity
(b) Phase velocity
(c) Particle velocity
(d) Group velocity

13	The shape of Lissajous figures is independent of the following	
(a)	Amplitude of SHM	
	Frequencies of two SHM	
	(c)	Initial phase of two SHM
	(d)	Final phase of two SHM

14	The frequency of a forward travelling wave on sting described by $\mathrm{y}=4 \cos (6.28 \mathrm{t}+5 \mathrm{x})$ is (a) 1 Hz	
(b)	0.5 Hz	
(c)	2 Hz	
	(d)	6.28 Hz

15	The wave velocity and the velocity with which the particles of medium are vibrating are(a) same (b) (c) different uniform (d)	

