Sample Paper

Physics USPH302 : Vector calculus, Analog Electronics

1. If biasing is not done in an amplifier circuit, it results in \qquad
(i) Decrease in the base current
(ii) Unfaithful amplification
(iii) Excessive collector bias
(iv) betteramplificaion
2. The disadvantage of base resistor method of transistor biasing is that it
(i) Is complicated
(ii) Is sensitive to changes in β
(iii) Provides high stability
(iv) gain is samll
3.The value of stability factor for a base resistor bias is \qquad
(i) $\mathrm{R}_{\mathrm{B}}(\beta+1)$
(ii) $(\beta+1) \mathrm{R}_{\mathrm{C}}$
(iii) $(\beta+1)$
(iv) $1-\beta$
3. Ideally the input resistance of an amplifier is \qquad .
(i) infinite
(ii) zero
(iii) less than 500Ω
(iv) less than 1000Ω
4. The phase relationship between input and output of CE Amplifier is \qquad _.
(i) 0°
(ii) 90°
(iii) 180°
(iv) 270°
5. Oscillator make use of \qquad feedback.
(i) positive
(ii) negative
(iii) voltage divider
(iv) no
6. Maximum frequency produced in Wien Bridge Oscillator is \qquad .
(i) 100 MHz
(ii) 10 MHz
(iii) 1000 MHz
(iv) 1 MHz
7. The formula for frequency of oscillation of Colpitt's oscillator is :
(i) $f=\frac{1}{2 \pi R C}$
(ii) $f=\frac{1}{2 \pi L C}$
(iii) $f=\frac{1}{2 \pi \sqrt{L C}}$
(iv) $f=\frac{1}{2 \pi \sqrt{R C}}$
8. Gain of voltage follower is \qquad
(i) 1
(ii) 10
(iii) 20
(iv) 50
9. Formula for slew rate is
(i) $S=\frac{\Delta V}{\Delta T}$
(ii) $S=\frac{\Delta T}{\Delta V}$
(iii) $S=\frac{\Delta I}{\Delta T}$
(iv) $S=\frac{\Delta T}{\Delta I}$

11 The line integral of the vector function $2 x^{2} \hat{\imath}+2 x y \hat{\jmath}$ from $(0,0)$ to $(1,0)$ is
i. $\quad 1$
ii. 2
iii. $\quad 1 / 2$
iv. $2 / 3$

12 The gradient of the function $\mathrm{e}^{\mathrm{x}}+\sin \mathrm{y}$ is
i. $\quad e^{x} \hat{\imath}+\cos y \hat{\jmath}$
ii. $\quad-2 e^{x} \hat{\imath}-\cos y \hat{\jmath}$
iii. $\cos y \hat{\jmath}$
iv. $e^{x} \hat{\imath}$

13 The value of $\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} x d x d y d z$ is
i. 2
ii. 1
iii. $1 / 2$
iv. $1 / 3$

14 In sphericalcoordinatesystem the line elements are
i. dx, dy, dz
ii. $\quad \mathrm{dr}, \mathrm{d} \theta, \mathrm{d} \phi$
iii. dr, rd $\theta, \operatorname{rsin} \theta d \phi$
iv. $\quad \mathrm{r}, \theta, \phi$
15. Thecoordinates in cylindrical coordinate system are
i. $\mathrm{x}, \mathrm{y}, \mathrm{z}$
ii. r, θ, ϕ
iii. $\mathrm{r}, \phi, \mathrm{z}$
iv. $\mathrm{x}, \mathrm{y}, \phi$

