ROYAL COLLEGE OF ARTS, SCIENCE AND COMMERCE

Semester-V Examination

(Sample Question Paper)

T.Y.B.Sc

CHEMISTRY-III (Organic)

CODE-USCH503

		Fill in the blanks by choosing the most appropriate	Unit
		option:	
1		A nucleophile	Ι
	а	attacks at position of high electron density.	
	b	is an electron deficient species.	
	С	is positively charged.	
	d	is an electron rich species.	
2		Conversion of CH_3COOH to CH_3CONH_2 is an that	Ι
		follows mechanism.	
	а	Acyl electrophilic substitution; tetrahedral	
	b	Alkyl electrophilic substitution, E_1	
	С	Alkyl nucleophilic substitution: E_2	
	d	Acyl nucleophilic substitution: tetrahedral	
3		Conversion of benzophenone to benzpinacol in the presence	Ι
		of UV light is	
	а	photoisomerisation	
	b	photosensitisation	
	С	photoreduction	
	d	photochemical rearrangement	
4		Name the following reaction:	Ι
	а	Cope rearrangement	
	b	Claisen rearrangement	
	C	Sigmatropic rearrangement	
	d	Chelotropic reaction	
5		ISC stands for	I
	а	Inter-System Crossing	-
1	b	Internal System Crossing	
	5		I

	С	Intra-System Crossing	
	d	Internally Sensitised Crossover	
6		Atropisomerism is due to restricted rotation around	II
		and is due to large substituents in biphenyls.	
	а	C-C ; para	
	b	C-C ; ortho	
	С	C=C ; para	
	d	C=C ; ortho	
7		Hexachlorocyclopentadiene is used to	II
		synthesise	
	а	Antu	
	b	Auxins	
	С	Indole 3- acetic acid	
	d	Endosulfan	
8			II
		H ₂ ,Pt, CH ₃ OH	
		i) >	
		Identify the product	
	а		
		✓ N H	
	b		
		N N	
		Н	
	С		
		N N	
		Н	
	d		
9		Amongst the following is the most basic in	II
-		nature.	_ = =
	а	Pyridine	
	b	Pyridine N-oxide	
	c	Quinolone	
	d	Quinolone N- oxide	
10		A chiral allene has of symmetry.	II

	а	alternating axis	
	b	centre	
	C	plane	
	d		
11	u	The simplest family of allene	III
11	а	Ethene	111
	b	Propadiene	
	C	butadiene	
	d	benzene	
12	u	The correct IUPAC name of CH ₂ =C=C=CH-CHO	III
12	2	Pentanal	111
	a b		
	-	Penta-2,3,4-trienoic acid	
	C	Penta-2,3,4-trienal	
10	d	Penta-1,2,3-trienoic acid	.
13		Which of the following is correct for the synthesis of	III
	-	Benadryl?	
	a	multicomponent synthesis	
	b	Convergent synthesis	
	C	Linear synthesis	
14	d	single step synthesis	
14		According to the Principle of green Chemistry, prevention is	III
	-	always better than	
	a b	application	
	b	cure	
	C	rejection	
15	d	synthesis	
15		Glucose is used as starting material in green synthesis of	III
	a	acetic acid	
		Nylon 6	
	C	Hexmethylene diamine	
10	d	Adipic acid	T) (
16		Introduction of a –OH group in benzene causes a	IV
	a	bathochromic; chromophore-chromopore	
	b	bathochromic; chromophore-auxochrome	
	C	hypsochromic ; chromophore-chromopore	
4 -	d	hypsochromic; chromophore-auxochrome	T) /
17		A peak at m/z 29 is due to	IV
	а	CH ₃	
	b	⁺ CH ₃	
	~		

	С	• C ₂ H ₅	
	d	⁺ C ₂ H ₅	
18		Citral is a	IV
	а	cyclic terpenoid	
	b	acyclic terpenoid	
	С	diterpenoid	
	d	sesquiterpenoid	
19		Isoprene is	IV
	а	2-methyl- 1,3-butadiene	
	b	2-ethyl- 1,3-butadiene	
	С	2-methyl- 1,3-pentadiene	
	d	2-ethyl- 1,3-pentadiene	
20		The nature of the 2 nitrogens in nicotine is	IV
	а	both secondary	
	b	both tertiary	
	С	one secondary and one tertiary	
	d	one primary and one secondary	