ROYAL COLLEGE OF ARTS, SCIENCE AND COMMERCE SYBSc SEMESTER III SAMPLE PAPER ANALYTICAL CHEMISTRY (USCH303)

Answer the following using correct option

1	In semi – micro analysis, size of the sample is in the range of	2
	to mg.	
	a) 0 to 10	
	b)10 to 100	
	c) 100 to 1000	
	d) 10 to 1000	
2	is used for sampling of liquids.	2
	a) Hand Scoop	
	b) Sample probe	
	c) Concentric tube thief	
	d) Sample thief	
3	Use of poorly calibrated glassware is an example of error.	1
	a) Instrumental	
	b)Methodic	
	c)Personal	
	d)Operational	
4	Relative error for an observation 5.1 is if the true value	2
	is 5.0.	
	a)0.1	
	b)0.02	
	c)0.1	
	d)0.2	
5	Bulk material is also called as	1
	a) Sample	
	b) Universe	
	c) Increment	
	d) Gross sample	
6	Primary standard used in acid-base titration is	01
	a) Sodium thiosulphate	
	b) Potassium chloride	
	c) Zinc sulphate	
	d) Borax	
7	When the precipitate is heated in the temperature of 250°C to	01
	1200°C, it is known as	
	a) Washing	

b) Dryingc) Incineration	
d) Ageing 10.0 cm ³ of 0.1M CH ₃ COOH was titrated with 0.1 M NaOH at 298 A. The pH of solution after addition of 2.0 cm ³ of 0.1 M NaOH will be	02
(Given: $K_w = 10^{-14}$. $K_a = 1.8 \times 10^{-5}$)	
• • • • • • • • • • • • • • • • • • • •	
b) 3.87	
c) 5.78	
d) 7.0	
$20.0 \text{ cm}^3 \text{ of } 0.05 \text{ M Na}_2\text{CO}_3 \text{ reacted completely with } 25.0 \text{ cm}^3 \text{ of HCl (Mol. Wt. = 36.5) solution. Concentration in g/dm}^3 \text{ of HCl}$	02
is	
a) 1.46	
b) 0.73	
c) 2.92	
d) 1.825	
At 298 °K solubility product of AgCl (Mol.Wt. = 143.5) is	02
·	
· · · · · · · · · · · · · · · · · · ·	
•	
· · · · · · · · · · · · · · · · · · ·	
_	01
- /	
·	
, , , , , , , , , , , , , , , , , , ,	0.1
• -	01
,	
,	
,	
	02
	02
a) 1.656×10^{-19}	
b) 2 385 X 10 ⁻¹⁹	
c) 1.840 X 10 ⁻²⁰	
d) 2.65 X 10 ⁻²⁰	
	02
product is formed. The absorbance of solution up to	
	c) Incineration d) Ageing 10.0 cm³ of 0.1M CH₃COOH was titrated with 0.1 M NaOH at 298 A. The pH of solution after addition of 2.0 cm³ of 0.1 M NaOH will be (Given: $K_w = 10^{-14}$. $K_a = 1.8 \times 10^{-5}$) a) 4.14 b) 3.87 c) 5.78 d) 7.0 20.0 cm³ of 0.05 M Na₂CO₃ reacted completely with 25.0 cm³ of HCl (Mol. Wt. = 36.5) solution. Concentration in g/dm³ of HCl is a) 1.46 b) 0.73 c) 2.92 d) 1.825 At 298 °K solubility product of AgCl (Mol.Wt. = 143.5) is 1.44 $\times 10^{-10}$. Its solubility in water is g/dm³. a) 0.001722 b) 0.002066 c) 0.01722 d) 0.02066 The unit of molar extinction coefficient is a) dm³.mol.cm b) dm³.mol.cm b) dm³.mol.cm² d) dm³.cm.mol⁻¹ c) dm³.mol.cm¹ d) dm³.cm.mol⁻¹ Hypsochromic effect is also known as a) Green shift b) Red shift c) Yellow shift d) Blue shift The energy associated with wavelength 1.2 $\times 10^{-6}$ m is J (Given: c = 3 $\times 10^{8}$ ms¹, h = 6.625 $\times 10^{-34}$ Js) a) 1.656 $\times 10^{-19}$ b) 2.385 $\times 10^{-19}$ c) 1.840 $\times 10^{-20}$ d) 2.65 $\times 10^{-20}$

equivalence point and ---- after equivalence point.

- a) Increases, decreases
- b) Decreases, increases
- c) Increases, remains constant
- d) Decreases, remains constant
- 15 A 2.5 X 10⁻⁵M solution of a substance with molar absorptivity 9000 was placed in a cell of 1.0 cm. The transmittance of the solution is ----.
 - a) 0.225
 - b) 0.596
 - c) 0.450
 - d) 0.298