		Mathematics Paper I(Calculus – I) – FYBSc - Sem I
1.	The e	existence of additive identity in \mathbb{R} is expressed using the equation
	(a)	$x*1=x$, $\forall x\in\mathbb{R}$
	(b)	$x*0=0$, $\forall x\in\mathbb{R}$
	(c)	$x * \frac{1}{x} = 1$, $\forall x \in \mathbb{R}$
	(d)	$x + 0 = 0 + x = x, \forall x \in \mathbb{R}$
		Marks:

2.	For p	, $q \in \mathbb{R}, p * q = 0$ implies
	(a)	Both $p = 0, q = 0$
	(b)	p = 0 or q = 0
	(c)	p-q=0
	(d)	None of the above
		Marks:

3.	If in	$fA = \sup A$, then the set A
	(a)	Contains only one element
	(b)	Contains 2 elements
	(c)	Is an empty set
	(d)	None of the above
		Marks: 1

4	Whic	ch of the following sequence is divergent?
	(a)	$5^{1/n}$
	(b)	$n^{1/n}$
	(c)	$n^{1/2}$
	(d)	None of the above
		Marks: 1

5	If (x_n) and (y_n) are convergent sequences then which of the following statements is not true?		
	(a) $(x_n + y_n)$ is convergent		
	(b) $(x_n - y_n)$ is convergent		
	(c) $(c x_n)$ is convergent $\forall n \in \mathbb{N}$		

(d)	None of the above
	Marks: 2

6	Let (x_n) be a sequence that is monotonic decreasing which is not bounded below then (x_n)		
	(a)	Is divergent	
	(b)	Is convergent	
	(c)	Is bounded	
	(d)	None of the above	
		Marks: 2	

7	1, ² –	cx^2 is the general solution of which of the following first order ODE?
'		1
	(a)	$\left \frac{dy}{dy} - \frac{y}{dy} \right $
		dx - x
	(b)	dy - x
		$\frac{1}{dx} = \frac{1}{y}$
	(c)	dy y
		$\frac{1}{dx} = \frac{1}{x}$
	(d)	dy x
		$\frac{1}{dx} = -\frac{1}{y}$
		Marks: 2

8	The	degree of the ordinary differential equation $\left(\frac{d^2y}{dx^2}\right)^3 - 5\left(\frac{dy}{dx}\right)^4 + 2y = x^6$
	(a)	4
	(b)	3
	(c)	2
	(d)	1
		Marks: 2

9	The equation of the orthogonal trajectories to the family of straight lines
	y = -x + c, c > 0 are
	(a) $y = x + k$
	(b) y = -2x + k
	(c) $2y = x + k$
	(d) y = 3x + k
	Marks: 2

10	A necessary and sufficient condition for a first order O.D.E.

M(x)	(x,y)dx + N(x,y)dy = 0 to be EXACT is
(a)	$\partial M \int \partial N$
	$\left \frac{\partial V}{\partial y} \neq \frac{\partial V}{\partial x} \right $
(b)	$\partial M - \partial N$
	$\frac{\partial y}{\partial y} = \frac{\partial x}{\partial x}$
(c)	$\partial M / \partial N$
	$\frac{\partial x}{\partial x} \neq \frac{\partial y}{\partial y}$
(d)	$\partial M - \partial N$
	$\frac{\partial}{\partial x} = \frac{\partial}{\partial y}$
	Marks: 2