
2. \quad For $p, q \in \mathbb{R}, p * q=0$ implies
(a) Both $p=0, q=0$
(b) $p=0$ or $q=0$
(c) $p-q=0$
(d) None of the above

Marks:

3.	If $\inf A=\sup A$, then the set A		
	(a)	Contains only one element	
	(b)	Contains 2 elements	
	(c)	Is an empty set	
	(d)	None of the above	

4	Which of the following sequence is divergent?		
	(a)	$5^{1 / n}$	
	(b)	$n^{1 / n}$	
(c)	$n^{1 / 2}$		
(d)	None of the above		

5 If $\left(x_{n}\right)$ and $\left(y_{n}\right)$ are convergent sequences then which of the following statements is not true?

(a)	$\left(x_{n}+y_{n}\right)$ is convergent
(b)	$\left(x_{n}-y_{n}\right)$ is convergent
(c)	$\left(c x_{n}\right)$ is convergent $\forall n \in \mathbb{N}$

	(d)	None of the above	Marks : 2

6	Let $\left(x_{n}\right)$ be a sequence that is monotonic decreasing which is not bounded below then $\left(x_{n}\right)$		
	(a)	Is divergent	
	(b)	Is convergent	
	(c)	Is bounded	
	(d)	None of the above	
			Marks : 2

7	$y^{2}=c x^{2}$ is the general solution of which of the following first order ODE?		
	(a)	$\frac{d y}{d x}=-\frac{y}{x}$	
	(b)	$\frac{d y}{d x}=\frac{x}{y}$	
	$\frac{d y}{d x}=\frac{y}{x}$		
	$\frac{d y}{d x}=-\frac{x}{y}$	Marks : 2	

8	The degree of the ordinary differential equation $\left(\frac{d^{2} y}{d x^{2}}\right)^{3}-5\left(\frac{d y}{d x}\right)^{4}+2 y=x^{6}$		
	(a) 4 (b) 3	3	
	(c)	2	
	(d)	1	

9	The equation of the orthogonal trajectories to the family of straight lines $y=-x+c, c>0$ are	
(a) $y=x+k$ (b) $y=-2 x+k$ (c) $2 y=x+k$ (d) $y=3 x+k$		

10	A necessary and sufficient condition for a first order O.D.E.

	$M(x, y) d x+N(x, y) d y=0$ to be EXACT is		
	(a) $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$		
	(b)	$\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$	
	(c)	$\frac{\partial M}{\partial x} \neq \frac{\partial N}{\partial y}$	
	(d)	$\frac{\partial M}{\partial x}=\frac{\partial N}{\partial y}$	
			Marks : 2

