Royal College of Arts Science and Commerce F.Y.B.Sc. **Semester I Sample Question Paper Chemistry II USCH 102 Instructions:** 1) Fill in the blanks with the most appropriate option 2) Each question is for 1m in Section I 3) Each question is for 2m in Sections II and III **Section I** $PCl_5 \longrightarrow PCl_3 + Cl_2$ is order reaction . 1 a Zero b | First c | Second d | Third The unit of molar refraction is 2 a dm³mol⁻¹ b dm⁻³mol¹ c dm⁻³mol⁻¹ d m⁻³mol⁻¹ In the periodic table, Group 13 – 18 elements are called 3 block elements. a s b P c d d | F The most unstable conformation of n-butane (C_2 - C_3) is 4 a | Antiperiplanar b | Synperiplanar c Anticlinal d | Synclinal 5 Stereoisomers that are not enantiomers are a optical isomers b | geometrical isomers c diastereomers d Isomers

		Section II
6		The milky and translucentsubstances produced before conversion to clear liquid have been named
	а	Crystalline , Cholestric liquid crystals
	b	Isotropic , Thermotropic liquid crystals
	C	Anisotropic , Liquid crystal
	d	Isotropic , Lyotropic liquid crystals
7		Select the incorrect relation.
	а	1 dyne .cm $^{-2}$.s = 1Poise
	b	1 Pa .s =10 Poise
	С	1 Nm ⁻² s=10 Poise
	d	1 dyne .cm $^{-2}$.s = 10 Poise
8		is the only allotropic element of Group 13.
	а	В
	b	Al
	С	Ga
	d	In
9		
		Identify the type of isomerism in
	а	E-Z
	b	
		Cis-Trans
	d	Syn-Anti
10		
		The sawhorse projection represents
	а	

	b	
	С	
	d	
		Section III
11		The correct expression for determination of order of reaction is
11		The correct expression for determination of order of reaction is
11	а	
11		$n = \frac{\log_{10}(t_{1/2})_1 - \log_{10}(t_{1/2})_2}{\log_{10} a_2 - \log_{10} a_1} - 1$
11	a	
11	b	
11		$ \mathbf{n} = \frac{\log_{10}(t_{1/2})_1 - \log_{10}(t_{1/2})_2}{\log_{10} a_2 - \log_{10} a_1} - 1 $ $ \mathbf{n} = \frac{\log_{10} a_2 - \log_{10} a_1}{\log_{10}(t_{1/2})_1 - \log_{10}(t_{1/2})_2} - 1 $ $ \mathbf{n} = \frac{\log_{10}(t_{1/2})_1 - \log_{10}(t_{1/2})_2}{\log_{10}(t_{1/2})_1 - \log_{10}(t_{1/2})_2} + 1 $
11	b	$ \mathbf{n} = \frac{\log_{10}(t_{1/2})_1 - \log_{10}(t_{1/2})_2}{\log_{10} a_2 - \log_{10} a_1} - 1 $ $ \mathbf{n} = \frac{\log_{10} a_2 - \log_{10} a_1}{\log_{10}(t_{1/2})_1 - \log_{10}(t_{1/2})_2} - 1 $ $ \mathbf{n} = \frac{\log_{10}(t_{1/2})_1 - \log_{10}(t_{1/2})_2}{\log_{10}(t_{1/2})_1 - \log_{10}(t_{1/2})_2} + 1 $ $ \mathbf{n} = \frac{\log_{10}(t_{1/2})_1 - \log_{10}(t_{1/2})_2}{\log_{10} a_2 - \log_{10} a_1} + 1 $
11	С	$ \mathbf{n} = \frac{\log_{10}(t_{1/2})_1 - \log_{10}(t_{1/2})_2}{\log_{10} a_2 - \log_{10} a_1} - 1 $ $ \mathbf{n} = \frac{\log_{10} a_2 - \log_{10} a_1}{\log_{10}(t_{1/2})_1 - \log_{10}(t_{1/2})_2} - 1 $ $ \mathbf{n} = \frac{\log_{10}(t_{1/2})_1 - \log_{10}(t_{1/2})_2}{\log_{10}(t_{1/2})_1 - \log_{10}(t_{1/2})_2} + 1 $ $ \mathbf{n} = \frac{\log_{10}(t_{1/2})_1 - \log_{10}(t_{1/2})_2}{\log_{10} a_2 - \log_{10} a_1} + 1 $
11	С	$ \mathbf{n} = \frac{\log_{10}(t_{1/2})_1 - \log_{10}(t_{1/2})_2}{\log_{10} a_2 - \log_{10} a_1} - 1 $ $ \mathbf{n} = \frac{\log_{10} a_2 - \log_{10} a_1}{\log_{10}(t_{1/2})_1 - \log_{10}(t_{1/2})_2} - 1 $ $ \mathbf{n} = \frac{\log_{10}(t_{1/2})_1 - \log_{10}(t_{1/2})_2}{\log_{10}(t_{1/2})_1 - \log_{10}(t_{1/2})_2} + 1 $
11	С	$ \mathbf{n} = \frac{\log_{10}(t_{1/2})_1 - \log_{10}(t_{1/2})_2}{\log_{10} a_2 - \log_{10} a_1} - 1 $ $ \mathbf{n} = \frac{\log_{10} a_2 - \log_{10} a_1}{\log_{10}(t_{1/2})_1 - \log_{10}(t_{1/2})_2} - 1 $ $ \mathbf{n} = \frac{\log_{10}(t_{1/2})_1 - \log_{10}(t_{1/2})_2}{\log_{10}(t_{1/2})_1 - \log_{10}(t_{1/2})_2} + 1 $ $ \mathbf{n} = \frac{\log_{10}(t_{1/2})_1 - \log_{10}(t_{1/2})_2}{\log_{10} a_2 - \log_{10} a_1} + 1 $
11	С	$ \mathbf{n} = \frac{\log_{10}(t_{1/2})_1 - \log_{10}(t_{1/2})_2}{\log_{10} a_2 - \log_{10} a_1} - 1 $ $ \mathbf{n} = \frac{\log_{10} a_2 - \log_{10} a_1}{\log_{10}(t_{1/2})_1 - \log_{10}(t_{1/2})_2} - 1 $ $ \mathbf{n} = \frac{\log_{10}(t_{1/2})_1 - \log_{10}(t_{1/2})_2}{\log_{10}(t_{1/2})_1 - \log_{10}(t_{1/2})_2} + 1 $ $ \mathbf{n} = \frac{\log_{10}(t_{1/2})_1 - \log_{10}(t_{1/2})_2}{\log_{10} a_2 - \log_{10} a_1} + 1 $
11	С	$ \mathbf{n} = \frac{\log_{10}(t_{1/2})_1 - \log_{10}(t_{1/2})_2}{\log_{10} a_2 - \log_{10} a_1} - 1 $ $ \mathbf{n} = \frac{\log_{10} a_2 - \log_{10} a_1}{\log_{10}(t_{1/2})_1 - \log_{10}(t_{1/2})_2} - 1 $ $ \mathbf{n} = \frac{\log_{10}(t_{1/2})_1 - \log_{10}(t_{1/2})_2}{\log_{10}(t_{1/2})_1 - \log_{10}(t_{1/2})_2} + 1 $ $ \mathbf{n} = \frac{\log_{10}(t_{1/2})_1 - \log_{10}(t_{1/2})_2}{\log_{10} a_2 - \log_{10} a_1} + 1 $

12		An organic liquid and water take 100 sec and 50 secs respectively
		to flow through an Ostwald's viscometer. The densities of the
		organic liquid and water are given to be 0.90 kg m ⁻³ and 1.00
		kg.m ⁻³ . If the viscosity of water is 1.0 X 10 ⁻³ kgm ⁻¹ s ⁻¹ ,calculate
		that of the organic liquid.
	а	$0.45 \times 10^{-3} \text{ kgm}^{-1}\text{s}^{-1}$
	b	$1.8 \times 10^{-3} \text{ kgm}^{-1}\text{s}^{-1}$
	С	$0.55 \times 10^{-3} \text{ kgm}^{-1}\text{s}^{-1}$
	d	4.5 x 10 ⁻³ kgm ⁻¹ s ⁻¹
13		Which of the following element forms only monoxides?
	а	Li
	b	Na
	С	K
	d	Rb
14		
		Assign the correct stereodescriptor to
	а	R
	b	S
	С	E
	d	Z
15		Statement A: The Meso form is optically inactive due to external
		compensation
		Statement B: A racemic mixture can be resolved by physical
		methods
	a	Statement A is True and Statement B is False
	b	Statement A is False and Statement B is True
	С	Both Statements A & B are True
	d	Both Statements A & B are False