S.Y.B.Sc. Semester III December 2020
 Physics Paper I
 Mechanics and Thermodynamics [USPH301] Sample Questions

1	A rocket has an exhaust velocity of $2500 \mathrm{~m} / \mathrm{s}$. The rate at which the fuel must burn to develop a thrust of 10000 N is	
	(a)	$0.25 \mathrm{~kg} / \mathrm{s}$
	(b)	$40 \mathrm{~kg} / \mathrm{sec}$
	(c)	$25 \times 10^{6} \mathrm{~kg} / \mathrm{sec}$
	(d)	$4 \mathrm{~kg} / \mathrm{sec}$
2	A particle is acted upon by a central force given by $\overrightarrow{\mathrm{F}}(\mathrm{r})=\widehat{\mathrm{r}} \mathrm{F}(\mathrm{r})$. The torque acting on the particle is ,	
	(a)	zero
(b)	$\mathrm{rF}(\mathrm{r})$	
(c)	$\mathrm{r} \times \mathrm{F}(\mathrm{r})$	
(d)	$\mathrm{F}(\mathrm{r}) / \mathrm{r}$	
3	The reduced mass expression of masses m_{1} and m_{2} can be given as:	
(a)	$m_{1}-m_{2}$	
(b)	$\frac{m_{1}}{m_{2}}$	
(c)	$\frac{m_{1} m_{2}}{m_{1}+m_{2}}$	
(d)	$\frac{m_{1} m_{2}}{m_{1}-m_{2}}$	

4	The period of a compound pendulum at the centre of oscillation period at point of suspension.	
	(a)	equal
	(b)	greater
	(c)	lesser
5	Damping force acting on an oscillator depends on	no relation
	(a)	Displacement
	(b)	velocity
	(c)	driving force
	(d)	acceleration
6	The process in which the temperature of the system remains the same is	
called		
	(a)	Adiabatic process
	(d)	work
(b)	Isothermal process	
	(c)	Isochoric process
	(a)	velocity
	(b)	volume
	(crebaric process	

8	The efficiency of reversible engine is ____.	
	(a)	Always greater than the irreversible engine
	(b)	Always less than the irreversible engine
	(c)	greater than the irreversible engine only at higher temperature
	(d)	greater than the irreversible engine only at lower temperature
9	A Carnot engine takes heat from source at $327^{\circ} \mathrm{C}$ and rejects heat to sink at $27^{\circ} \mathrm{C}$. The efficiency of engine is \qquad -.	
	(a)	75\%
	(b)	50\%
	(c)	52\%
	(d)	64\%
10	If 300 KJ of heat is supplied at a constant fixed temperature of 150 K , the change in entropy will be \qquad _.	
	(a)	$0.5 \mathrm{KJ} / \mathrm{K}$
	(b)	$0.2 \mathrm{KJ} / \mathrm{K}$
	(c)	$2 \mathrm{KJ} / \mathrm{K}$
	(d)	$5 \mathrm{KJ} / \mathrm{K}$
11	Third law of thermodynamics deals with behavior of substance at —.\qquad	
	(a)	Low temperature
	(b)	High temperature
	(c)	Absolute zero temperature
	(d)	Moderate temperature

12	When the solid is converted into liquid, the rate of change of pressure is positive if \qquad .	
	(a)	$\mathrm{V}_{2}=0$
	(b)	$\mathrm{V}_{2}=\mathrm{V}_{1}$
	(c)	$\mathrm{V}_{2}<\mathrm{V}_{1}$
	(d)	$\mathrm{V}_{2}>\mathrm{V}_{1}$
13	All the expansion coefficients tends to \qquad , when temperature tends to 0 K .	
	(a)	Very high
	(b)	zero
	(c)	constant
	(d)	unchanged
14	The depression of melting point of ice produced by one atm increase of pressure is \qquad . [Given : Latent heat of ice $=80 \mathrm{cal} / \mathrm{gm}$, specific volume of ice and water at $0^{\circ} \mathrm{C}$ are $1.091 \mathrm{~cm}^{3}$ and $1.0 \mathrm{~cm}^{3}$]	
	(a)	0. $75{ }^{\circ} \mathrm{C}$
	(b)	$0.075{ }^{\circ} \mathrm{C}$
	(c)	$0.0075{ }^{\circ} \mathrm{C}$
	(d)	$7.5{ }^{\circ} \mathrm{C}$
15	Low-temperature physics is also known as ___.	
	(a)	isogenics
	(b)	biogenics
	(c)	Coolant
	(d)	cryogenics

