Royal College of Arts, Science & Commerce T.Y.B.Sc. Semester V Sample Paper Physics Paper IV (USPH504) Electrodynamics

Constants:

1] $\varepsilon_0 = 8.85 \times 10^{-12} \frac{C^2}{Nm^2}$ 2] $\mu_0 = 4\pi \times 10^{-7} \frac{N}{A^2}$ 3] Electronic charge = $1.6 \times 10^{-19}C$

- Q.1 Select correct answer
- The Electric field intensity at a point due to a point charge is inversely proportional to.
 A) charge
 B) size of the above
 - B) size of the charge
 - C) distance of the point charge
 - D) square of the distance from the charge
- 2. Which of the following law gives a relation between the electric flux through any closed surface and charge enclosed by the surface?
 - A) Coulomb's law
 - B) Newton's law
 - C) Gauss's law
 - D) Ampere's law
- 3. The differential form of Gauss's law in electrostatics can be expressed as ...

A)
$$\vec{\nabla} \cdot \vec{E} = \frac{\rho}{\varepsilon_0}$$

B) $\vec{\nabla} \cdot \vec{E} = \rho \varepsilon_0$
C) $\vec{\nabla} \cdot \vec{E} = 0$
D) $\vec{\nabla} \cdot \vec{E} = \frac{Q}{\varepsilon_0}$

4. The electrostatic field at any point between the surface and centre of solid conducting charged sphere of radius R is

A)
$$E = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2}$$

B) $E = \frac{1}{4\pi\varepsilon_0} \frac{q}{R^2}$
C) zero
D) $E = \frac{1}{4\pi\varepsilon_0} \frac{q^2}{r^2}$

- 5. Poisson's equation is stated as _____. $A)\nabla^2 V = -\frac{\rho}{\varepsilon_0}$ $B)\nabla^2 E = \frac{\rho}{\varepsilon_0}$ $C)\nabla^2 V = -\frac{Q}{\varepsilon_0}$ $D)\nabla^2 E = \frac{Q}{\varepsilon_0}$
- 6. The volume charge density and surface charge density are defined as respectively $A)\rho_b = \vec{\nabla} \cdot \vec{P} \& \sigma_b = -\vec{P} \cdot \hat{n}$ $B)\rho_b = -\vec{\nabla} \cdot \vec{P} \& \sigma_b = \vec{P} \cdot \hat{n}$ $C)\rho_b = -\vec{\nabla} \cdot \vec{P} \& \sigma_b = -\vec{P} \cdot \hat{n}$ $D)\rho_b = \vec{\nabla} \cdot \vec{P} \& \sigma_b = \vec{P} \cdot \hat{n}$
- 7. Gausses law in presence of dielectric is A) $\vec{\nabla} \cdot (\varepsilon_0 \vec{E} - \vec{P}) = \rho_f$ B) $\vec{\nabla} \cdot (\varepsilon_0 \vec{E} + \vec{P}) = \rho_f$ C) $\vec{\nabla} \cdot (E - \varepsilon_0 \vec{P}) = \rho_f$ D) $\vec{\nabla} \cdot (\vec{E} + \varepsilon_0 \vec{P}) = \rho_f$
- 8. The dielectric constant of methanol is 33 and electric susceptibility is 32 kept in external filed of 200v/m. Find the polarization. (Given: Permittivity of free space=8.85x10⁻¹²C²/Nm²)
 A) 5.66x10⁸C/m²
 B) 5.66x10⁻⁸C/m²
 C) 5.66x10⁻⁸m²/C
 D)5.66x10⁸m²/C
- 9. $\begin{array}{c} & \underline{\quad} \text{ is called Ampère's law (in differential form).} \\
 & A) \vec{\nabla} \times \vec{B} = \mu_0 \vec{J} \\
 & B) \vec{B} = \mu_0 \vec{J} \\
 & C) \vec{\nabla} \cdot \vec{B} = \mu_0 \vec{J} \\
 & D) \vec{\nabla} \cdot \vec{B} = \vec{J}
 \end{array}$
- 10. If I_{enc} (the current enclosed by the Amperian loop), then $\oint B \cdot dl =$ _____. A) $2\mu_0 I_{enc}$ B) $\mu_0 I_{enc}$ C) $2\mu_0 I$ D) $-\mu_0 I$

In magnetized material potential of volume current and potential of surface current densities are

11. defined respectively as _____.

A) $\vec{J_b} = \vec{\nabla} \times \vec{M}$ and $\vec{K_b} = \vec{\nabla} \times \hat{n}$ B) $\vec{\rho_b} = \vec{\nabla} \times \vec{M}$ and $\vec{\sigma_b} = \vec{\nabla} \times \hat{n}$ C) $\vec{J_b} = -\vec{\nabla} \times \vec{M}$ and $\vec{K_b} = \vec{\nabla} \times \hat{n}$ D) $\vec{\rho_b} = \vec{\nabla} \times \vec{M}$ and $\vec{\sigma_b} = -\vec{\nabla} \times \hat{n}$

- 12. The Amperes law (in integral form) inside magnetized material is given as _____. A) $\oint \vec{\nabla} \times \vec{H} = \vec{J_f}$ B) $\oint \vec{H} \times dl = \vec{J_f}$ C) $\oint \vec{H} \cdot dl = \vec{I_f}$ D) $\oint \vec{\nabla} \cdot \vec{H} = \vec{I_f}$
- 13. The correct relationship between \vec{B} and \vec{H} is given as _____. A) $\vec{B} = \mu_0 (1 - \chi_m) \vec{H}$ B) $\vec{B} = \mu_0 (1 + \chi_m) \vec{H}$ C) $\vec{H} = \mu_0 (1 + \chi_m) \vec{B}$ D) $\vec{H} = \mu_0 (1 - \chi_m) \vec{B}$
- 14. Maxwell's correction term to the Ampere's law is _____. A) $+\mu_0 \varepsilon_0 \frac{\partial E}{\partial t}$
 - $\begin{array}{l} \text{B} & -\mu_0 \varepsilon_0 \frac{\partial E}{\partial t} \\ \text{B} & -\mu_0 \varepsilon_0 \frac{\partial E}{\partial t} \\ \text{C} & +\mu_0 \varepsilon_0 \frac{\partial B}{\partial t} \\ \text{D} & -\mu_0 \varepsilon_0 \frac{\partial B}{\partial t} \end{array}$
- 15. For steady currents $\vec{\nabla} \cdot \vec{J}$ is _____.
 - A) Imaginary
 - B) zero
 - C) Infinite
 - D) non-zero
- 16. When the polarization of the dielectric changes there is motion of the bound surface charges which results in _____.
 - A) Bound current
 - B) Magnetic current
 - C) Free current
 - D) Polarisation current
- 17. The expression for continuity equation is _____.

A)
$$\overline{\nabla}.\overline{J} + \frac{\partial\rho}{\partial t} = 0$$

B) $\overline{\nabla}.\overline{J} - \frac{\partial\rho}{\partial t} = 0$
C) $\overline{\nabla}.\overline{\rho} + \frac{\partial\overline{J}}{\partial t} = 0$
D) $\overline{\nabla}.\overline{\rho} - \frac{\partial\overline{J}}{\partial t} = 0$

18 Poynting theorem is principle of conservation of _____.A) currentB) charge

C) energy

D) momentum

19 Energy density in electromagnetic field is _____. A) $\frac{\varepsilon_0 E^2}{2} - \frac{B^2}{2\mu_0}$ B) $\frac{\varepsilon_0 E^2}{2} + \frac{B^2}{2\mu_0}$ C) $\frac{E^2}{2\varepsilon_0} + \frac{B^2}{2\mu_0}$ D) $\frac{E^2}{2\varepsilon_0} + \frac{2B^2}{\mu_0}$

20