F.Y.B.Sc. Semester I January 2021 Physics Paper II Modern Physics [USPH102] Sample Questions

1	$^{27}Mg_{12} \longrightarrow ^{+27}Al_{13}$		
	(a)	γ radiations + positron	
	(b)	γ radiations + electron	
	(c)	α particle	
	(d)	only γ radiations	
2	The half life of ¹⁹⁸ Au is 2.7 days. Its decay constant :		
	(a)	4.28 x10 ⁻⁶ /sec	
	(b)	2.97 x10 ⁻⁶ /sec	
	(c)	0.37/day	
	(d)	1/day	
3 The following radioactive series term		following radioactive series terminates on Bi as stable product :	
	(a)	4n	
	(b)	4n +1	
	(c)	4n+2	
	(d)	4n+3	
4 When the impact parameter is less than the ra		n the impact parameter is less than the radius of the nucleus, then	
	(one of the following statement is wrong)		
	(a)	the deflection of α -particle is less	
	(b)	the force of nuclear charge above and below the path of the α -particle acts in opposite directions	
	(c)	the α -particle passes through the nucleus	
	(d)	this deflection helps in determination of the radius of the nucleus	

5	The value of packing fraction of is closer to zero		
	(a)	¹⁶ O	
	(b)	⁴ He	
	(c)	$^{12}\mathrm{C}$	
	(d)	²³⁵ U	
6	Heavy charged particles lose more energy per unit length of the		
	(a)	above their range	
	(b)	in between their range	
	(c)	at the start of their range	
	(d)	near the end of their range	
7	If the one i	e energy of an α -particle is 3.5 MeV and energy required to create on-pair is 35 eV then the number of ion-pairs produced is	
	(a)	2×10^3	
	(b)	3×10^4	
	(c)	1 x 10 ⁵	
	(d)	2×10^{6}	
8	For the ionization chamber, the applied voltage is approximately		
	(a)	10 V	
	(b)	200 V	
	(c)	800 V	
	(d)	1000 V	
9	If the Q value of a nuclear reaction is negative then the reaction is terms as		
	(a)	Endoergic reaction	
	(b)	Exoergic reaction	
	(c)	Scattering reaction	
	(d)	Pickup reaction	

10	In th	e nuclear reaction N ¹⁴ (α , x) O ¹⁷ , x represents	
	(a)	positron	
	(b)	electron	
	(c)	neutron	
	(d)	proton	
11	As the wavelength of the radiation decreases, the intensity of the black body radiations		
	(a)	Increases	
	(b)	Decreases	
	(c)	First increases then decrease	
	(d)	First decreases then increase	
12	The sun emits maximum radiation of 0.52 micron meter. Assuming sun to be a black body, Calculate the surface temperature of the sur		
	(a)	2345 K	
	(b)	5573 K	
	(c)	9847 K	
	(d)	6492 K	
13	What did the Davisson-Germer experiment involve?		
	(a)	Firing electrons at a lattice.	
	(b)	Shining light on a metal.	
	(c)	Firing alpha particles at gold foil.	
	(d)	Shining light through a glass block.	
14	X-ray crystallography uses which characteristic of light?		
	(a)	Polarization	
	(b)	Interference	
	(c)	Diffraction	

	(d)	Coherency	
15	What is Compton shift?		
	(a)	Shift in velocity	
	(b)	Shift in charges	
	(c)	Shift in radiation	
	(d)	Shift in wavelength	