T.Y.B.Sc. Physics Theory Exam Online MCQ Semester VI, 2019-20 Paper I - Classical Mechanics [USPH601]

1	A body of mass 10 kg is falling under gravity. The total force on the body as observed from a frame moving vertically downward with an acceleration of $2 \mathrm{~m} / \mathrm{s}^{2}$ is \qquad	
	(a)	9.6 N
	(b)	96 N
	(c)	78 N
	(d)	7.8 N
2	The acceleration that appears only when the starred system is not rotating uniformly with some angular velocity is called \qquad	
	(a)	Centripetal acceleration
	(b)	Coriolis acceleration
	(c)	Centrifugal acceleration
	(d)	Azimuthal acceleration
3	In case of 1 dimensional central Force equation $f(r)+\frac{L^{2}}{m r^{3}}$, the term $\frac{L^{2}}{m r^{3}}$ represents\qquad force	
	(a)	Real
	(b)	Fictitious
	(c)	General
	(d)	Resistive
4	For circular orbit the value of eccentricity	
	(a)	$\epsilon>1$
	(b)	$\epsilon \geq 1$
	(c)	$\epsilon<1$
	(d)	$\epsilon=0$
5	In a frame of reference, if a body of mass 2 kg is moving with acceleration $5 \mathrm{~m} / \mathrm{s}^{2}$ exert the force 10 N then the frame is called as \qquad	
	(a)	Inertial frame of reference
	(b)	Non-inertial frame of reference
	(c)	Pseudo frame of reference
	(d)	Centrifugal frame of reference
6	D-Alembert's principle is used for which of the following	
	(a)	Change static problem into a dynamic problem
	(b)	Change dynamic problem to static problem
	(c)	To calculate moment of inertia of rigid bodies
	(d)	To calculate angular momentum of a system of masses
7	In motion of a body on an inclined plane under gravity, the constraint is	
	(a)	Holonomic
	(b)	Non-Holonomic
	(c)	Scleronomous
	(d)	Rheonomous

8	A simple pendulum of length l. The bob of the pendulum moves in a vertical $x-y$ plane and its distance from the fulcrum is fixed. If x, y, z are coordinates of the bob then equations of the constraints are \qquad —.	
	(a)	$x^{2}+y^{2}=l$ and $z=$ constant
	(b)	$x^{2}+z^{2}=l$ and $y=$ constant
	(c)	$y^{2}+z^{2}=l$ and $x=$ constant
	(d)	$x^{2}+y^{2}+z^{2}=l$
9	Number of constraints equations for simple pendulum of fixed length are	
	(a)	1
	(b)	2
	(c)	3
	(d)	4
10	Lagrangian of free particle in terms of spherical coordinates. Here no force acts on the particle	
	(a)	$L=\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}+r^{2} \sin ^{2} \theta \dot{\phi}^{2}\right)$
	(b)	$L=\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}+r^{2} \sin ^{2} \theta \dot{\phi}^{2}\right)-V(r, \theta, \phi)$
	(c)	$L=\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}+r^{2} \sin ^{2} \theta \dot{\phi}^{2}\right)+V(r, \theta, \phi)$
	(d)	$L=\frac{1}{2} m\left(\dot{r}^{2}+r^{2} \dot{\theta}^{2}+r^{2} \sin ^{2} \theta \dot{\phi}^{2}\right)-V(r)$
11	If $\nabla \times \mathrm{v}=0$, then the flow in rotating frame is	
	(a)	Irrational
	(b)	Rational
	(c)	Constant
	(d)	Zero
12	The translation motion of a rigid body in a space is is governed by the equation	
	(a)	$\mathrm{dP} / \mathrm{dt}=\mathrm{F}$

	(b)	$\mathrm{dV} / \mathrm{dt}=\mathrm{F}$
	(c)	$\mathrm{dp} / \mathrm{dt}=\mathrm{L}$
	(d)	$\mathrm{dL} / \mathrm{dt}=\mathrm{P}$
13	For a rigid body rotating about an axis ; each particle of the body describe a \qquad with axis of rotation passing through its Centre and perpendicular to its plane of rotation.	
	(a)	Square
	(b)	Circle
	(c)	Ellipse
	(d)	Parabola
14	For an asymmetric top without any external torque, which of the statements is correct?	
	(a)	If axis of rotation makes small angle initially with 3-axis it precesses in the opposite direction.
	(b)	If axis of rotation makes small angle initially with 2-axis it precesses in the same sense.
	(c)	If axis of rotation makes small angle initially with 3-axis, it precesses in the same sense.
	(d)	If axis of rotation makes small angle with 1-axis, the motion is unstable.
15	Due to equatorial bulge, Earth can be considered as	
	(a)	an oblate symmetric top
	(b)	a prolate symmetric top
	(c)	spherical top
	(d)	asymmetric top
16	The word 'anharmonic'' appears in atomic and molecular physics to describe a ___.	
	(a)	Nonlinear oscillator
	(b)	Ring oscillator
	(c)	Harmonic oscillator
	(d)	Phase oscillator
17	The characteristic of chaotic system is	
	(a)	Sensitivity to initial condition
	(b)	Linearity
	(c)	Fidelity
	(d)	Opacity
18	The Saddle point is a	
	(a)	Stable

	(b)	Unstable
	(c)	Corresponding to Oscillatory Motion
	(d)	Corresponding to Damped Oscillatory Motion
19	Stable limit cycle in phase cycle is example	
	(a)	Attractor
	(b)	Strange Attractor
	(c)	Repellor
	(d)	None of the above
20	The phase space representation of a simple harmonic oscillator is	
	(a)	open but bounded loop
	(b)	Ellipse
	(c)	closed loop resembling figure of 8
	(d)	a single point

