T.Y.B.Sc. Physics Theory Exam Online MCQ Semester VI, 2019-20 Paper I - Classical Mechanics [USPH601]

1	A body of mass 10 kg is falling under gravity. The total force on the body as observed		
	from a frame moving vertically downward with an acceleration of 2 m/s ² is		
	(a) 9.6 N		
	(b) 96 N		
	(c) 78 N		
	(d) 7.8 N		
2	The acceleration that appears only when the starred system is not rotating uniform		
	with some angular velocity is called		
	(a) Centripetal acceleration		
	(b) Coriolis acceleration		
	(c) Centrifugal acceleration		
	(d) Azimuthal acceleration		
3	In case of 1 dimensional control Force equation $f(r) \perp L^2$ the term L^2 represents		
	In case of 1 dimensional central Porce equation $f(r) + \frac{1}{mr^3}$, the term $\frac{1}{mr^3}$ represents		
	force		
	(a) Real		
	(b) Fictitious		
	(c) General		
	(d) Resistive		
4	For circular orbit the value of eccentricity		
	(a) $\epsilon > 1$		
	(b) ε≥1		
	(c) $\epsilon < 1$		
	(d)		
5	In a frame of reference, if a body of mass 2 kg is moving with acceleration 5 m/s^2		
	exert the force 10 N then the frame is called as		
	(a) Inertial frame of reference		
	(b) Non-inertial frame of reference		
	(c) Pseudo frame of reference		
	(d) Centrifugal frame of reference		
6	D-Alembert's principle is used for which of the following		
	(a) Change static problem into a dynamic problem		
	(b) Change dynamic problem to static problem		
	(c) To calculate moment of inertia of rigid bodies		
	(d) To calculate angular momentum of a system of masses		
7	In motion of a body on an inclined plane under gravity, the constraint is		
	(a) Holonomic		
	(b) Non-Holonomic		
	(c) Scleronomous		
	(d) Rheonomous		

8	A simple pendulum of length l . The bob of the pendulum moves in a vertical $x - y$					
	plane	plane and its distance from the fulcrum is fixed. If x, y, z are coordinates of the bob				
	then e	nen equations of the constraints are				
	(a)	$x^2 + y^2 = l$				
		and $z = constant$				
	(b)	$x^2 + z^2 = l$ and $y = \text{constant}$				
	(c)	$y^2 + z^2 = l$ and $x = \text{constant}$				
	(d)	$x^2 + y^2 + z^2 = l$				
9	Number of constraints equations for simple pendulum of fixed length are					
	(a)	1				
	(b)	2				
	(c)	3				
	(d)	4				
10	Lagrangian of free particle in terms of spherical coordinates. Here no force acts on the particle					
	(a)	$L = \frac{1}{2}m(r^{2} + r^{2}\dot{\theta}^{2} + r^{2}\sin^{2}\theta\dot{\phi}^{2})$				
	(b)	$L = \frac{1}{2}m(r^{2} + r^{2}\dot{\theta}^{2} + r^{2}\sin^{2}\theta\dot{\phi}^{2}) - V(r,\theta,\phi)$				
	(c)	$L = \frac{1}{2}m(r^{2} + r^{2}\dot{\theta}^{2} + r^{2}\sin^{2}\theta\dot{\phi}^{2}) + V(r,\theta,\phi)$				
	(d)	$L = \frac{1}{2}m(r^{2} + r^{2}\dot{\theta}^{2} + r^{2}\sin^{2}\theta\dot{\phi}^{2}) - V(r)$				
11	If ∇ >	x = 0, then the flow in rotating frame is				
	(a)	Irrational				
	(b)	Rational				
	(c)	Constant				
	(d)	Zero				
12	The translation motion of a rigid body in a space is is governed by the equation _					
	(a)	dP/dt = F				

	(b)	dV/dt = F			
	(c)	dp/dt = L			
	(d)	dL/dt = P			
13	For a	rigid body rotating about an axis ; each particle of the body describe a with			
	axis o	of rotation passing through its Centre and perpendicular to its plane of rotation.			
	(a)	Square			
	(b)	Circle			
	(c)	Ellipse			
	(d)	Parabola			
14	For a	n asymmetric top without any external torque, which of the statements is correct?			
	(a)	If axis of rotation makes small angle initially with 3-axis it precesses in the opposite direction.			
	(b)	If axis of rotation makes small angle initially with 2-axis it precesses in the same sense.			
	(c)	If axis of rotation makes small angle initially with 3-axis, it precesses in the same sense.			
	(d)	If axis of rotation makes small angle with 1-axis, the motion is unstable.			
15	Due to equatorial bulge, Earth can be considered as				
	(a)	an oblate symmetric top			
	(b)	a prolate symmetric top			
	(c)	spherical top			
	(d)	asymmetric top			
16	The word "anharmonic" appears in atomic and molecular physics to describe a				
	(a)	Nonlinear oscillator			
	(b)	Ring oscillator			
	(c)	Harmonic oscillator			
	(d)	Phase oscillator			
17	The characteristic of chaotic system is				
	(a)	Sensitivity to initial condition			
	(b)	Linearity			
	(c)	Fidelity			
	(d)	Opacity			
18	The S	Saddle point is a			
	(a)	Stable			

	(b)	Unstable		
	(c)	Corresponding to Oscillatory Motion		
	(d)	Corresponding to Damped Oscillatory Motion		
19	Stable limit cycle in phase cycle is example			
	(a)	Attractor		
	(b)	Strange Attractor		
	(c)	Repellor		
	(d)	None of the above		
20	20 The phase space representation of a simple harmonic oscillator is			
	(a)	open but bounded loop		
	(b)	Ellipse		
	(c)	closed loop resembling figure of 8		
	(d)	a single point		