ROYAL COLLEGE OF ARTS, SCIENCE AND COMMERCE

Semester-VI Examination (Sample Paper)

T.Y.B.Sc

CHEMISTRY-III (Organic)

CODE-USCH603

	Fill in the blanks with the most corre	ct option ;			
L	Bromination of Cis -2-butene gives				
	a) (+)2,3-dibromobutane	b) (-) 2,3- bromobutane			
	c) (\pm) 2,3-dibromobutane	d) meso-2,3-dibromobutane			
2 Hydroxylation of 1,3-diphenyl ethene using KMnO ₄ is a additi					
3	The * marked atoms in the following compound are				
	H ₃ C, /I*				
	\cc				
	Br				
	H"				
	a) enantiotopic ligands	b) diastereotopic ligands			
	c) enantiotopic faces	d) diastereotopic faces			
4	is a neutral essential amino acid		1		
	a) aspartic acid	b) alanine			
	c) phenylalanine	d) glycine			
5	Primary structure of protein does not give		1		
	a) nature of $lpha$ -amino acid	b) number of each α -amino acid			
	c) sequence of α -amino acid	d) 3-D structure of protein	2		
The product of the following reaction is					
	C_6H_5 CH_3				
	$C_1H_2 \longrightarrow C_2 \longrightarrow C_3$				
	C_6H_5 C				
	ОН ОН				

a)
$$C_6H_5$$
 CH_3 b) C_6H_5 C_6H_5

c)
$$C_6H_5$$
 C_6H_5 d) C_6H_5 CH $H_3C-C-CH$ C_6H_5 CH C_6H_5 CH C_6H_5 CH C_6H_5 OH

7	Beckmann rearrangement is a reaction, in which the group that					
	is to the -OH of the oxime migrates a) stereospecific; anti b) stereospecific; syn					
	c) stereoselective; anti d) stereoselective; syn					
8	is an epimer of D-glucose.	1				
	a) L-glucose b) D- mannose					
	c) L-mannose d) D-fructose					
9	The following structure represents					
	a) α -D-glucofuranose b) β -D-glucofuranose	1				
	ÇH₂OH					
	c) α-D-glucopyranose d) β-D-glucofuranose					
	H O H					
	он он он					
10	D-Glucose on treatment with gives D-Gluconic acid	1				
	a) conc. HNO ₃ b) HIO ₄					
	c) NaBH ₄ d) Br ₂ -H ₂ O					
11						
4.0	a) 2 b) 3 c) 4 d) 5	1				
12						
13	a) -OH b) - NH ₂ c) >C=O d) R-O-R Magnetic anisotropy causes of aldehydic protons, hence they					
	appear more than expected.	_				
	a) deshielding; upfield b) shielding; upfield					
	c) deshielding; downfield d) shielding : downfield					
14	The sugar unit is bonded to position of the purine.	1				
	a) 1 b) 5 c) 7 d) 9					
15	The adenine in DNA is bonded to with a bond.	2				
	a) thymine; double b) thymine; triple					
	c) cytosine; double d) cytosine; triple					
16	Which of the following is not used as filler in polymer formation?	1				
	a) sawdust b) gypsum c) papers d) Sodium chloride	4				
17	Which of the following is not a biodegradable polymer?	1				
10	a) PHBV b) Polyaspertate c) Polyacrylic acid d) HDPE Ethylene can be converted into ethylene oxide by using	1				
18	a) LiAlH ₄ b) SeO ₂ c) m-CPBA d) PtO	1				
	-, -, -, -, -, -, -, -, -, -, -, -, -, -					

19	NBS converts cyclohexanone tobromo cyclohexanone				1
	a) alpha	b) beta	c) gamma	d) delta	
20 Trans form of polyisoprene is called					1
	a) Buna-S	b) Gutta-perc	ha c) Bake	elite d) PVC	