CHEMISTRY

FYBSc - Semester I

	1.1 – Chemical Thermodynamics	CO 1	Explain the various terms of thermodynamics and thermochemistry
		CO2	Write sign conventions and relation between heat capacities
		CO 3	Calculate heat ,work , internal energy, enthalpy, bond energy, bond dissociation energy and resonance energy from thermodynamic data.
		CO 4	Know derivation of Kirchhoff's equation
		CO 5	Solve numerical problems based on this topic
	1.2 – Chemical calculations	CO 1	Know expressions for various concentration units
USCH 101		CO 2	Solve numerical on concentration units and their interconversion
General Chemistry		CO 1	Write the mathematical statements and physical significance of atomic structure
	2.1 – Atomic structure	CO 2	Explain Rutherford's atomic model, Bohr's theory & atomic spectrum of hydrogen atom
		CO 3	Know principles of quantum mechanics
	2.2- Periodic Table and periodicity	CO 1	Elaborate on periodic table and periodic trends
		CO 2	Classify elements as main group, transition and inner transition elements
		CO 3	Explain Slater's rule, Pauling, Mulliken and Alred Rochow electronegativities
	3.1 – Classification & Nomenclature of	CO 1	Apply basic rules of IUPAC nomenclature

	Organic Compounds	CO 2	Draw structures of organic compounds and name using IUPAC nomenclature
	3.2 Bonding and Structure of Organic compounds	CO 1	correlate bonding and structure to reactivity of organic compounds
	3.3 - Fundamentals of organic reaction	CO 1	Understand electronic effects within a molecule and correlate with reactivity
	mechanism	CO 2	Describe and identify types of organic reactions
		CO 1	Write the terms involved in chemical kinetics
		CO2	Define order and molecularity of reaction
USCH 102	1.1 Chemical Kinetics	CO 3	Derive expressions for half-life period and rate constant of 1st and 2nd order reaction
		CO 4	Determine order of reaction by Integration, Graphical , Half-life and Ostwald's isolation method.
		CO 5	Write characteristics and examples of 1st and 2nd order reactions
		CO 6	Solve numerical based on expressions of chemical kinetics
Chemistry)		CO 1	Explain concept of surface tension, viscosity and refractive index
	1.2 Liquid State	CO2	Determine surface tension by drop number method, viscosity by Ostwalds viscometer and refractive index by Abbe's refractometer
		CO 3	Know the classification and applications of liquid crystals
		CO 4	Solve numerical
	2.0 - Comparative	CO 1	Compare chemistry of main group elements and the periodic trends
	chemistry of Main Group elements	CO2	Elaborate on the methods of synthesis of compounds from main group elements

		CO 3	Review the harmful effects of environmental pollutants namely oxides of C, S & N.
	3.0 -Stereochemistry- I	CO 1	Establish relationship between stereoisomers and conformers
		CO2	Draw and interconvert projections
		CO 3	Visualize 3D structure and correlate to stability

FYBSc - Semester II

	1.1 – Gaseous State	CO 1	Know the concept of ideal and real gases, gas laws and deviations , kinetic theory of gases, Maxwell Boltzmann distribution of velocities, Joule Thomson effect , Le Chatelier's principle
		CO2	Write steps involved in the derivation of van der waals equation
		CO 3	Solve numerical on ideal and non ideal
		CO 4	Discuss Joule Thomson effect
USCH 201 (General Chemistry)		CO 1	Identify the type of equilibrium constant
	1.2 – Chemical Equilibria and Thermodynamic	CO2	Elaborate on 2nd law of thermodynamics, law of mass action, Le Chatelier's principle
		CO 3	Explain concept of free energy and its significance
	Parameters	CO 4	Write steps involved in the derivation of equilibrium constant
		CO 5	Solve numerical based on chemical equilibria and thermodynamic parameters
	2.1 – Concept of Qualitative Analysis	CO 1	elucidate on the principle of qualitative analysis (Detection of cations and anions)
		CO2	Balance chemical equations.

		CO 3	analyze effect of common ions and buffer action
		CO 1	Review different acid-base theories (Arrhenius, Lowry-Bronsted, Lewis)
	2.2 - Acid Base theories	CO2	Apply acid base chemistry in understanding organic reactions
		CO 3	Write calculation of acid - base titration curve
	3.0 - Chemistry of	CO 1	Correlate bonding and structure to reactivity of organic compounds
	Hydrocarbons	CO2	Write reactions for interconversion of functional groups
		CO 1	Elucidate on the types of electrolyte, factors affecting degree of ionization
	1.1 - Ionic Equilibria	CO2	Define pH scale, buffers, buffer capacity
		CO 3	Write derivation of Henderson's equation
	1.2 - Molecular Spectroscopy	CO 1	Elaborate on regions of electromagnetic radiation
		CO2	Describe Planck's equation
USCH 202		CO 3	Derive Beer-Lambert's law
		CO 4	Explain various phenomenon taking place during interaction of electromagnetic radiation with matter
Chemistry)		CO 1	Know the types of solids
••••••••••••	1.3 - Solid state chemistry	CO2	Write laws of crystallography
		CO 3	Define unit cell, space lattice, lattice plane
	2.1 - Chemical Bond and Reactivity	CO 1	Determine the structure of chemical compounds by calculation of steric number
		CO2	Review Sidgwick Powell theory and VSEPR theory
	2.2 Ovidation	CO 1	Illustrate balancing redox reaction
	2.2 - Oxidation Reduction Chemistry	CO2	Draw Frost , Latimer diagram of redox couple
	3.1 - Stereochemistry – II	CO 1	Visualize 3D structure and correlate to stability

		CO2	Establish relationship between stereoisomers and conformers
	3.2 Aromatic	CO 1	Correlate aromaticity and stability of compounds
Hydrocarbons	CO2	Write mechanism for electrophilic substitution in aromatic compounds	

S.Y.B.Sc : Semester III

	1.1 - Chemical Thermodynamics – II	CO 1	Define free energy functions
		CO2	Write derivations of Gibbs Helmholtzequation, van't Hoff reaction isotherm , van't Hoff reaction isochore and Gibb's Duhem equation
		CO 3	Know the concept of partial molal properties, fugacity and activity
		CO 4	Solve numerical on thermodynamic relations
USCH 301 (General Chemistry)		CO 1	Define specific resistance, specific conductance, cell constant, equivalent and molar conductivity and their units.
		CO2	Explain variation of specific and equivalent conductance of strong and weak electrolyte with dilution
	1.2 - Electrochemistry	CO 3Know Kohlrausch's law of independent migration of ions an applications to determine equiva conductance of weak electrolyte zero conc., degree of ionization of weak electrolyte, solubility and solubility product of sparingly sol salt and ionic product of water	Know Kohlrausch's law of independent migration of ions and its applications to determine equivalent conductance of weak electrolyte at zero conc., degree of ionization of weak electrolyte, solubility and solubility product of sparingly soluble salt and ionic product of water
		CO 4	Explain Transport number of an ion and factors affecting it
		CO 5	Know determination of transport number by moving boundary method
		CO 6	Solve the numerical
	Chemical Bonding – 2.1 – Non Directional	CO 1	To review the conditions for the formation of ionic bond
	2.2 – Directional Bonding : Orbital	CO2	To elaborate on the different types of ionic crystals & radius ratio rules

	Approach	CO 3	To determine lattice energy of ionic compounds by Born Lande equation, Kapustinski equation and Born Haber's cycle
		CO 4	To explain the basic tenets of Valence bond theory to explain covalent bonding
		CO 5	To elucidate the potential energy curve w.r.t formation of H2 molecule.
		CO 6	To debate on the improvements suggested to the Valence bond theory for the formation of Hydrogen molecule.
		CO 7	To determine the resonation structures of different covalent molecules and calculate the formal charge.
		CO 8	To discuss the concept of hybridization and the different types of hybridization observed in covalent molecules
-	2.3 - Molecular Orbital Theory	CO 1	Write mechanisms of reactions of halogenated hydrocarbons
		CO2	Synthesized various classes of organic compounds using Grignard reagent
	3.1 – Reactions &	CO 1	Write mechanisms of reactions of halogenated hydrocarbons
	halogenated hydrocarbons	CO2	Synthesized various classes of organic compounds using Grignard reagent
	3.2 – Alcohols,	CO 1	Name alcohols , phenols and epoxides using IUPAC nomenclature
	epoxides	CO2	Write reactions for interconversion of functional groups
USCH 302	1.1- Chemical kinetics – II	CO 1	Explain types of complex chemical reactions with example
(General Chemistry)		CO2	Know the effect of temperature on rate constant k and derivation of Arrhenius equation

		CO 3	Explain and calculate energy of activation
		CO 4	Elucidate on the theories of reaction rate – Collision theory and activated complex theory of bimolecular reactions
		CO 1	Define ideal and non-ideal solutions on the basis of Raoult's law
		CO2	Draw vapour pressure composition diagrams and temperature – composition diagrams for ideal and non-ideal solutions
		CO 3	Demonstrate distillation techniques for miscible & immiscible liquids
		CO 4	Explain Lever rule and Azeotropes
	1.2 - Solutions	CO 5	Describe the term critical solution temperature associated with partially miscible liquid
		CO 6	Draw and explain temperature – composition diagram of phenol- water, Triethanolamine-water and nicotine-water system
		CO 7 Elaborate on principle of solvent extraction technique, Nernst distribution law and its applications	
		CO 1	To elaborate on the electron deficient nature of Lewis acid compounds like Boron hydrides and Boron halides
	2.1 - Chemistry of Boron Compounds	CO2	To review the methods of preparation of diborane and tetraborane.
	boron compounds	CO 3	To review the occurrence and extraction process of Germanium.
		CO 4	To describe the preparation of extra pure Germanium
	2.2 - Chemistry of	CO 1	To elucidate on the occurrence, structure and inertness of SiO2.
	Silicon and	CO2	To explain the preparation of SiCl4.
	Germanium	CO 3	To review the occurrence and extraction process of Germanium.

		CO 4	To describe the preparation of extra pure Germanium
	2.3- Chemistry of Nitrogen family	CO 1	To discuss trends in chemical reactivity with respect to hydrides and oxides of nitrogen family.
		CO2	To review the preparation, properties and structure of different oxides of nitrogen
		CO 3	To elaborate on the Haber's process for synthesis of ammonia
	3.0 - Carbonyl	CO 1	Name carbonyl compounds using IUPAC nomenclature
	Compounds	CO2	Write reactions for interconversion of functional groups
	Unit I – Introduction to Analytical Chemistry and Statistical Treatment of analytical data	CO 1	Explain important terms and their significance
		CO2	Know purpose of analytical chemistry and different methods of analysis
		CO 3	Select a method of analysis
		CO 4	Decide how to identify a sample and prepare it for analysis
		CO 5	Select a procedure for analysis
USCH 303		CO 6	Identify types and sources of errors in results
(Basics of		CO 7	Solve numerical on errors in analysis
Analytical Chemistry)		CO 1	Explain various method of chemical analysis
		CO2	Define terms involved in titrimetric methods
	Unit II – Classical Mothods of Applysic	CO 3	Know the types and tools of titrimetric analysis
	IVIETNOUS OF ANALYSIS	CO 4	Distinguish primary and secondary standards
		CO 5	select proper titrimetric method
		CO 6	Construct titration curves on the basis of change in pH.

	CO 7	Determine end point by using indicators, by potentiometry or conductometryØ Determine end point by using indicators, by potentiometry or conductometry
	CO 8	Learn principle and steps involved in gravimetry
	CO 9	Identify suitable gravimetric method
	CO 10	Perform the required calculations involved in titrimetry & gravimetry
	CO 1	Know about a generalized diagram of an analytical instrument
	CO2	Select a suitable instrumental method for analysis
Unit III -Instrumental Methods – I	CO 3	Appreciate the basic terms in spectrometry
	CO 4	Use the relationship between absorbance (and its variations) and concentration of the analyte.
	CO 5	Choose a suitable method for photometric titrations

S.Y.B.Sc : Semester IV

USCH 401 (General Chemistry)		CO 1	Explain Electrochemical cell with example
		CO2	Construct and represent electrochemical cell
		CO 3 Identify reversible and irreversible and irreversi	Identify reversible and irreversible electrochemical cell
	1.1 - Electrochemistry – II	CO 4	 Know concept of electrochemical series and types of electrodes Derive relation of EMF with ΔG, ΔG°, ΔH, ΔS & equilibrium constant
		CO 5	
		CO 6	Classify concentration cell with and without transference
		CO 7	Explain liquid junction potential and use of salt bridge

		CO 8	Determine pH using hydrogen & quinhydrone electrode
		CO 9	Solve the numerical problems based on this topic
		CO 1	Write Gibbs phase rule and its thermodynamic derivation
		CO2	Explain meaning of phase, component and degree of freedom
	1.2 –Phase Equilibria	CO 3	Write derivation and importance of Clausius – Clapeyron equation
		CO 4	Draw & explain phase diagram of water , sulphur and Pb-Ag system
		CO 1	To discuss the position of transition metals in periodic table, their occurrence
	2.1 – Comparative Chemistry of the transition metals	CO2	To elaborate on the electronic configuration, oxidation states and anomalous oxidation state exhibited by transition elements
		CO 3	To discuss the properties of first transition series elements w.r.t color, magnetic properties and associated properties
		CO 4	To review the chemistry of Titanium and Vanadium w.r.t oxides and chlorides and use of these compounds in qualitative analysis
		CO 5	To discuss qualitative tests for detection of transition metal ions
		CO 1	To know the historical background of coordination compounds
		CO2	To explain the basic terms involved in coordination chemistry.
	2.2 – Coordination	CO 3	To name coordination compounds as per IUPAC Nomenclature.
	Cnemistry	CO 4	To debate on different types of isomerism exhibited by coordination compounds
		CO 5	To discuss Werner's theory of coordination compounds

			To elucidate on the basic assumptions
		CO 6	of Valence bond theory as applied to coordination compounds
		CO 7	To determine the structure of coordination compounds with coordination number 4, 5 and 6.
		CO 8	To differentiate between inner and outer orbital complexes
		CO 9	To review the applications of complex compounds
		CO 1	Name carboxlic acid and sulphonic acids using IUPAC nomenclature
	3.1 – Carboxylic acids and their Derivatives	CO2	Predict acid strength of different acids and correlate to structure
	3.2 – Sulphonic acids	CO 3	Write reactions for interconversion of functional groups
	1.1 - Solid State	CO 1	Describe laws of crystallography and types of crystals
		CO2	Write characteristics of simple , FCC and BCC system
		CO 3	Know use of X rays in crystallography
		CO 4	Derive Bragg's equation
		CO 5	Draw and explain structure of NaCl and KCl
		CO 6	Determine Avogadro's No.
		CO 7	
(General Chemistry)		CO 1	Explain types of catalysis and terms involved in catalysis
chemistry	1.2 - Catalysis	CO2	Write mechanism and kinetics of acid- base and enzyme catalysis
		CO 3	Elaborate on effect of particle size and efficiency of nanoparticles as catalyst
	2.1 - Acidity of Cations and Basicity of Anions	CO 1	Predict degree of hydrolysis of cations when variables are charge & radius
		CO2	Write Latimer equation, relationship between pKa

		CO 3	Classify cations & anions on the basis of acidity and basicity
		CO 4	Discuss effect of charge and radius on hydration of anions
	2.2 - Uses and Environmental	CO 1	Write uses and environments aspects of oxo acids
	Chemistry of volatile Oxides and oxo – acids	CO2	Describe physical properties of sulfuric, Nitric and Phosphoric acid
	3.0- Nitrogen	CO 1	Name Nitrogen containing compounds & heterocylces using IUPAC nomenclature
	containing compounds and	CO2	Write reactions for interconversion of functional groups
	compounds	CO 3	Analyse the stability of 5 & 6 – membered heterocycles to their aromatic character
	Unit - 1 : Methods of Separation	CO 1	The importance of separation in sample treatment
		CO2	Various methods of separations
		CO 3	How to select a method of separation of an analyte from the matrix
		CO 4	How a solute gets distributed between two immiscible phases
		CO 5	Principle of solvent extraction and various terms involved there in
USCH 403 (Basics in		CO 6	Effect of various parameters on solvent extraction of a solute
Analytical Chemistry - II)		CO 7	The Classification of Chromatographic methods
		CO 8	Paper and thin layer chromatography and using them in practice.
	Unit – II	CO 1	The nature of interaction between applied electrical potential and the concentration of the analyte.
	Instrumetnal Methods - II	CO2	The nature of chemical reactions that influence potential of a cell
		CO 3	The various types of electrodes or half cells.

		CO 4	The nature, need and importance of pH
		CO 5	The applications of potentiometry , pH metry and conductometry
		CO 1	The use of statistical methods in chemical analysis.
		CO2	The nature of indeterminate errors
	Unit – III Statistical Treatment of Analytical data - II	CO 3	The randomness of such errors and its distribution around a correct or acceptable result
		CO 4	Computation of Confidence limits and confidence interval
		CO 5	Test for rejection of doubtful result
	CO 6	Method to draw best fitting straight line	

T.Y.B.Sc : Semester V

	Unit - I : 1.1 - Colligative Properties of dilute solutions 1.2 - Phase Rule	CO 1	Discuss Raoult's law and relative lowering of vapour pressure
		CO2	Write thermodynamic derivation relating elevation in the boiling point, depression in the freezing point & molar mass of non-volatile solute.
		CO 3	Derive van't Hoff equation for osmotic pressure
USCH 501		CO 4	Elaborate on abnormal masses of solute and van't Hoff factor
(Physical Chemistry)		CO 5	Calculate degree of dissociation and association
		CO 6	Solve Numerical based on colligative properties
		CO 7	Know Gibbs phase rule and terms involved in it
		CO 8	Draw & explain phase diagrams of 1,2 and 3 component systems
		CO 9	Explain phase diagram for three liquids forming one immiscible pair

		CO 1	Describe types of adsorption isotherm
		CO2	Derive Langmuir adsorption isotherm
		CO 3	Write B.E.T equation and explain terms involved in it
		CO 4	Solve Numerical on surface area determination using BET equation
	Unit – II	CO 5	Explain types of catalysis and terms involved in catalysis
	2.1 - Surface Chemistry & catalysis	CO 6	Write mechanism and kinetics of acid- base and enzyme catalysed reaction (Michaelis – Menten equation)
	2.2 – Colloids	CO 7	Know types of colloids
		CO 8	Explain origin of charge on colloidal particles, concept of zeta potential and electro-kinetic phenomena
		CO 9	Elaborate on colloidal electrolyte and Donnan Membrane Euilibrium
		CO 10	Write applications of surfactants in detergent, food industry and in pesticide formulation
		CO 1	Write expressions for activities of electrolytes of different valence type
		CO2	Identify cells as chemical and concentration cell
	11	CO 3	Derive expressions for emf of concentration cell
	Electrochemistry –	CO 4	Explain liquid junction potential and use of salt bridge
		CO 5	Determine pH of a solution using quinhydrone & Glass electrode
		CO 6	Construct cell to determine solubility and Ksp of sparingly soluble salt
		CO 7	Apply emf measurements to determine liquid junction potential
	Unit – IV 4.1 - Introduction to	CO 1	Define terms associated with polymers
	Polymers 4.2 – Crystalline state	CO2	Classify polymers based on source, structure, thermal response etc

		CO 3	Know different expressions to represent molar mass of polymer
		CO 4	Discuss ultracentrifuge & viscosity method for molecular weight
		CO 5	Solve numerical on molecular weight of polymers
		CO 6	Know characteristics, method of preparation and applications of LEPs
		CO 7	Write characteristics of simple , FCC and BCC system
		CO 8	Know use of X rays & derivation of Bragg's eqn.
		CO 9	Draw and explain structure of NaCl and KCl
		CO 10	Determine Avogadro's No.
		CO 11	Elaborate on elementary ideas of crystal defects
		CO 12	Solve numerical based on this topic
		CO 1	Debate on Importance of symmetry in Chemistry
		CO2	Determine different symmetry operations and point groups in molecules
Unit - 1 : Chemical Bonding and Solid State Chemistry USCH 502 (Inorganic Chemistry) Unit II : Solid Materials Unit III : Chemistry of elements Unit IV : Solution Chemistry	Unit - 1 : Chemical Bonding and Solid State Chemistry Unit II : Solid	CO 3	Elucidate on the differences in the Molecular Orbital theory applied to diatomic and polyatomic molecules
		CO 4	Illustrate the bonding in different diatomic and polyatomic molecules by Molecular orbital diagram.
	CO 5	Explain the different types of terms involved in the study of solids	
	elements Unit IV : Solution Chemistry	CO 6	Evaluate the packing density id different types of close packed structures
		CO 7	Debate on the different types of point defects in solids
		CO 8	Elaborate on the history of Superconductivity and the recent advances in the field f superconductivity

		CO 9	Describe the position of inner transition elements in the periodic table, their electronic configuration, and properties
		CO 10	Debate on the methods used for separation of lanthanons and their applications
		CO 11	Evaluate the different types of non aqueous solvent and their properties
		CO 12	Illustrate different types of reactions in non aqueous solvents.
		CO 13	Relate the periodic properties of Group 16 and 17 elements
		CO 14	Elucidate on the properties and structure of oxyacids of halogens and interhalogens by VSEPR theory
	Mechanism of Organic reactions	CO 1	After studying this unit learner will be able to
	Stereochemistry	CO2	Visualise 3 –D structure of molecules and correlate to stability and reactivity
	Carbohydrates	CO 3	Interconvert projection of carbohydrates
		CO 4	Write reactions of monosaccharides
		CO 5	Interconvert monosachharides
USCH 503 (Organic Chemistry)	IUPAC Nomenclature	CO 1	Name using IUPAC nomenclature the following special classes of organic compounds – Biphenyls, Cummulenes and Bicyclic compounds
	Heterocyclic chemistry	CO 1	Explain aromaticity of heterocycles
		CO 2	Compare reactivity of 5 & 6 membered heterocycles
	Organic Synthesis	CO 1	Explain newer methods of organic synthesis & their advantages
		CO 2	Synthesize some drugs and dyes

		CO 1	Identify and calculate types of errors in analysis
		CO2	Distinguish between accuracy and precision
		CO 3	Know concept of central tendency, standard deviations of a data
	Unit I : 1.1- Treatment of	CO 4	Solve numerical based on error, accuracy & standard deviation
	Analytical data, 1.2- Sampling	CO 5	Define terms involved in sampling
		CO 6	Know significance & purpose of sampling
		CO 7	Write steps involved in sampling of solids, liquids & gases
		CO 8	Analyse difficulties encountered in sampling
USCH 504 (Analytical	Unit II : 2.1- Acid-base titrations 2.2- Precipitation titrations 2.3 – U.V Visible spectroscopy	CO 1	Construct titration curves and discuss choice of indicator in different acid- base titration
Chemistry)		CO2	Construct titration curves of Argentimetric titration
		CO 3	Describe theory and applications of Volhard's and Mohr's method
		CO 4	Know components of Photometer and Spectrophotometer
		CO 5	Differentiate between single beam and double beam spectrophotometer
	Unit III : Methods of	CO 1	Know Principles of solvent extraction.
	separation 3.1 – Solvent	CO2	Differentiate between partition coefficient and Distribution ratio
	3.2 – Chromatography	CO 3	Describe types of techniques of solvent extraction such as- Batch extraction and continuous extraction
	3.3 – Planar chromatography	CO 4	Write advantages and applications of solvent extraction.

		CO 5	Solve the numerical problems
		CO 6	Know principle and classification of chromatographic technique
		CO 7	Learn technique and applications of PC and TLC
		CO 1	Learn absorption and emission spectra
		CO2	Describe components, principle and technique of flame photometry and AAS
	Unit IV : Optical Methods 4.1- Atomic	CO 3	Interpret data by different methods
	Spectroscopy 4.2 – Molecular	CO 4	Know quantitative applications of atomic spectroscopy
	Florescence & Phosphorescence 4.3 – Turbidimetry & Nephalometry	CO 5	Describe theory, instrumentation and applications of fluorescence and phosphorescence spectroscopy
		CO 6	Know the difference between Nephelometry and Turbidimetry
		CO 7	Learn instrumental techniques for measurement of turbidance
		CO 8	Write Applications of Turbidimetry and Nephalometry
USACDD 505 (Pharmaceutical Chemistry and Dye stuffs)	Unit l :	CO 1	Understand the pharmacological terms used with respect to the medicinal chemistry
		CO2	know the ingredients of drug formulation and different modes of drug administration and formulations
	Unit II :	CO 1	classify the drugs used in different general ailments

		CO2	know the chemical constituent and application of different classes of drugs
	Unit III :	CO 1	correlate colour and structure of different dye molecule
		CO2	Correlate class of dyes to mode application
		CO 3	To understand benzene, naphthalene & anthracene chemistry w.r.t. to conversion and introduction of functional group
	Unit IV :	CO 1	know fundamental properties of colorants
		CO2	Correlate class of dyes to mode of application
		CO 3	Write reaction for synthesis of different dyes using appropriate conditions

T.Y.B.Sc : Semester VI

USCH 601 (Physical Chemistry)	Unit - I : Molecular Spectroscopy	CO 1	Identify structure of molecules on the basis of dipole moment
		CO2	Identify structure of molecules on the basis of dipole moment
		CO 3	Define terms used in rotational, vibrational & Raman spectroscopy
		CO 4	Know conditions for obtaining pure rotational spectrum,vibrational spectrum and rotational vibrational spectrum and selection rule
		CO 5	Identify types of vibrations in a molecule
		CO 6	Interpret structure of water and carbon dioxide according to IR and Raman spectroscopy
		CO 7	Elaborate on quantum theory and Rule of Mutual Exclusion

		CO 8	Solve numerical based on internuclear distance , isotopic mass, Raman shift, vibrational and IR spectroscopy
		CO 1	Describe limitations of classical mechanics
		CO2	Know Concept of quantization and wave particle duality
	Unit II : 2.1 - Basics of Quantum Chemistry	CO 3	Explain Uncertainty principle and its physical significance
		CO 4	Elaborate on 'Boundary conditions' andtime independent Schrodinger wave equation.
		CO 5	Interpret properties of Wave function
		CO 6	Describe postulate of quantum mechanics
	2.2 – Applied electrochemistry	CO 7	Know types of polarization and its elimination
		CO 8	Write experimental set up for determination of decomposition potential and overvoltage
		CO 9	Write objectives and procedure of electroplating
		CO 1	Describe principle , construction and working of fuel cells, Lithium ion cell & solar cells
	Unit III : 3 1 - Renewable	CO2	Elaborate on hydrogen as universal energy medium
3.1 – Renewable energy sources 3.2 – Nuclear Magnetic Resonance Spectroscopy	energy sources	CO 3	Know principle and terms involved in NMR spectroscopy
	3.2 – Nuclear Magnetic Resonance	CO 4	Explain relaxation processes and chemical shift
	CO 5	Draw low resolution NMR spectrum of methanol and ethanol	
	3.3 –	CO 6	Classify reactions on the basis of rate
	Chemical Kinetics	CO 7	Know stop flow method to study kinetics of fast reaction
		CO 8	Elaborate on collision theory and its application to unimolecular and bimolecular reaction

		CO 1	Identify types of nuclear radiation
		CO2	Write principle , construction & working of G.M Counter and Scintillation counter
Unit IV : Nuclear Chemistry		CO 3	Define units of radioactivity and explain Decay kinetics
	Unit IV : Nuclear	CO 4	Know types of radioactive equilibrium & nuclear transmutation
	Chemistry	CO 5	Write fissile and fertile material with example
		CO 6	Describe components of a nuclear reactor, Breeder and Power reactor
		CO 7	Write applications of tracer technique
		CO 8	Solve numerical based on Q-value and threshold energy
USCH 602 (Inorganic Chemistry)	Unit - I : Coordination Chemistry Unit II : Properties of Coordination compounds Unit III : Organometallic Chemistry Unit IV : Inorganic Polymers , Characteristics and Treatment of liquid effluent , Nanomaterials, Inorganic Pharmaceuticals	CO 1	Review the limitations of Valence bond theory in explaining bonding in complexes.
		CO2	Elaborate on the postulates of crystal field theory and crystal field splitting in octahedral, tetrahedral and Square Planar complexes.
		CO 3	Calculate Crystal field stabilization energies for tetrahedral and octahedral complexes.
		CO 4	Comment on Jahn Teller distortion in octahedral complexes.
		CO 5	Elucidate on the limitations of Crystal field theory
		CO 6	Identify central metal orbitals and construct ligand group orbital
		CO 7	Construct o molecular orbital for an octahedral complex
		CO 8	Evaluate the difference between thermodynamic stability and kinetic stability of complexes and comment on the factors affecting thermodynamic stability

	CO 9	Compare on different types of reactions undergone by complexes
	CO 10	Evaluate and identify inert and labile complexes
	CO 11	Elaborate on the mechanisms of acid hydrolysis, base hydrolysis anation reactions of octahedral complexes.
	CO 12	Review the different types of electronic transitions responsible for electronic spectra of atoms
	CO 13	Identify allowed and forbidden transitions on the basis of selection rules.
	CO 14	Determine terms and term symbols for transition metal ions.
	CO 15	Determine terms for p2 and d1 electronic configuration
	CO 16	Elucidate the different types of organometallic compounds
	CO 17	Elaborate on the various synthetic routes for the preparation of organometallic compounds and the associated chemical reactions.
	CO 18	Explain the synthesis ,structure and properties of sandwich compound Ferrocene
	CO 19	Review the different types of metallurgies and the general steps involved.
	CO 20	Elaborate on the pyrometallurgical extraction of Copper
	CO 21	Review the historical perspectives of Noble gases and recent advances in the chemistry of Noble gases
	CO 22	Elucidate on the preparation, properties and structure of Xenon fluorides by VSEPR THEORY
	CO 23	Evaluate the importance of essential and non-essential elects in biological systems

		CO 24	Explain the importance of some selected metal ions (Na+, K+,Fe2+, Cu2+)
	Spectroscopy	CO 1	Predict spectral details and identify structural features of organic compounds from spectra
		CO2	Interpret spectra
USCH 603 (Organic Chemistry)	Polymers	CO 1	Prepare polymers from respective monomers and list their uses
	Photochemistry	CO 1	Explain fate of photochemically excited molecules and photochemical reactions
	Catalysts and Reagents	CO 1	Prepare organic compounds by converting functional groups by use of appropriate catalyst and reagent.
	Natural Products	CO 1	Discuss the distinguishing features and properties of different natural products
		CO2	Predict structural features on the basis of analytical evidence
		CO 3	Synthesize some listed natural products
	Organometallic Chemistry	CO 1	Compare reactivity of organometallics
		CO2	Synthesize various classes of organic compounds using organometallics
	Biomolecules	CO 1	Describe structure and properties of important biomolecules
USCH 604 (Analytical Chemistry)	Unit I : 1.1- D.C. Polarography 1.2- Amperometric titrations	CO 1	Know polarography as an analytical tool
		CO2	Write construction, working, advantages and disadvantages of DME
		CO 3	Derive polarographic wave equation
		CO 4	Explain different terms involved in Ilkovic equation
		CO 5	Know need of removal of dissolved oxygen from analyte solution
		CO 6	Draw polarographic cell

		CO 7	Discuss qualitative and quantitative methods of analysis
		CO 8	Write applications and solve numerical problems
		CO 9	Describe rotating platinum electrode & different titration curve
		CO 10	Know principle, applications, advantages and limitations of amperometric titration
	Unit II : 2.1 – Gas Chromatography 2.2- HPLC 2.3- Ion Exchange Chromatography	CO 1	Know principle , instrumentation and applications of GLC & HPLC
		CO2	Elaborate on types of elution, U.V and I.R detectors in HPLC
		CO 3	Describe types of ion exchangers & mechanism of ion exchange
		CO 4	Determine separation factor and ion exchange capacity
		CO 5	Know factors affecting separation of ions and applications
	Unit III : 3.1 – Treatment of Analytical data 3.2- Complexometric Titrations 3.3- Redox titrations	CO 1	Describe distribution of random error
		CO2	Explain Gaussian curve, student t.
		CO 3	Know criteria for rejection of result
		CO 4	Solve numerical on 2.5d rule, 4.0 rule, Q test, method of averages and least square method.
		CO 5	Write advantages & limitations of EDTA as titrant
		CO 6	Explain types of EDTA titrations
		CO 7	Discuss theory and applications of metallochromic indicators, rodox indicators
	CO 8	Understand criteria for selecting an indicator for a redox titration	
		CO 9	Construct titration curves of listed titration
		CO 10	Know use of diphenylamine and ferroin as redox indicator
	Unit IV : 4.1- Total Quality Management	CO 1	Elaborate on concept of quality, quality control, TQM, ISO series and Good laboratory practices

	4.2- Mass spectrometry 4.3- Thermal	CO2	Know principle and instrumentation
			of mass spectrometry
		CO 3	Classify thermal methods of analysis
	methods	CO 4	Discuss basic principle,
	4.4- Radioanalytical		instrumentation involved in TGA
techniques	CO 5	Write factors affecting TG curve and applications	
		CO 6	Classify radio analytical techniques
		CO 7	Explain principle and applications of NAA
	Unit I :	CO 1	understand the different aspect of
		01	drug discovery and drug designing
USACDD 605 (Pharmaceutical Chemistry and Dye stuffs)		CO2	know the mode by which the drug interact in biological system and drug metabolism
	Unit II :	CO 1	understand the mode of action of drug in general
		CO2	know the chemo therapeutic drug and their application, mode of action and side effects
	Unit III :	CO 1	classify dyes on the mode of application to understand the fiber and the different techniques of dyeing.
	Unit IV :	CO 1	distinguish b/w dyes and pigments